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CHAPTER 0

Introduction

Before we begin to go through the theorems and proofs, we will go through, as
an introduction, some problems and examples of Topology.

We will start with the idea of a space. We won’t define a topological space yet,
but for now we can look at some examples:

Example 0.1. Euclidean spaces X ⊂ Rn = {(x1, . . . , xn) | xi ∈ R}. We have
the usual notion of Euclidean distance between two points in the space:

d ((x1, . . . , xn), (y1, . . . , yn)) =

(
n∑
i=1

(xi − yi)2

) 1
2

.

Example 0.2. The n-dimensional disk Dn = {v ∈ Rn | ‖v‖ 6 1}. Similarly,

the n-dimensional open disk D̊n = {v ∈ Rn | ‖v‖ < 1}, and the (n−1)-dimensional
sphere Sn−1 = {v ∈ Rn | ‖v‖ = 1}.

Remark 0.3. S0 is comprised of the points ±1 on a line.

We will also use the idea of continuity; we won’t define this just yet, but for
now we can perhaps talk about continuity using the ideas of Advanced Calculus.

We now look at some classic questions in Topology.
This is a classical questions that arises in many areas of mathematics:

Question 0.4. Given a function f : X → X, a point u ∈ X is called a fixed
point of f if f(u) = u. What can we say about whether or not f has fixed points?

Example 0.5. If we have v ∈ Rn, f : Rn → Rn given by f(x) = x+ v, we see
that f has no fixed points if v 6= 0. On the other hand, if v = 0, then every x is
fixed. This is an extreme example.

Example 0.6. Let f : Rn → Rn be a rotation around the origin. Then there
is exactly one fixed point: the origin.

Many other questions can, using a bit of cleverness, be turned into a question
about having fixed points. As a result, there is a vast amount of literature dealing
with this question. These results have had enormous impacts in many fields of
mathematics.

We will look at some famous examples of spaces and fixed points.

Theorem 0.7 (Brouwer Fixed-Point Theorem). For any continuous function
f : Dn → Dn there exists a fixed point.

That is a very strong and remarkably general statement. The analogue fails for
Euclidean space, for open disks and for spheres.

1



2 0. INTRODUCTION

Example 0.8. For open disks, push everything to the right, but dampen the
effect as we get closer and closer to the right side. As a concrete example, on the
open interval D1 = (−1, 1) take f(x) = (x+ 1)/2.

Example 0.9. For X = Sn, consider α(v) = −v. This is the antipodal map.

Remark 0.10. Obviously the antipodal map does not work for X = Dn, as
the origin remains fixed.

However, there is good theory (by Hadamard) about which functions f : Sn →
Sn must have fixed points.

We will now attempt a sketch of the proof for the Brouwer Fixed-Point Theo-
rem. We will get stuck, because we have not yet developed some of the machinery
needed yet (that we will later in the course). But we will reach a point that is
hopefully somewhat intuitive.

Proof-Sketch. We will use a proof by contradiction. Let f : Dn → Dn.
Assume that for all x ∈ Dn, f(x) 6= x. Draw the line from f(x) through x to the
edge Sn−1. Call g(x) the point where the line meets Sn−1. Thus we have defined
the function g : Dn → Sn−1.

•
x

•f(x)

•g(x)

Figure 0.11.

It is not hard to check that g is continuous. Note that if x ∈ Sn−1, then
x = g(x), so g does not move points on Sn−1.

Consider the special case of n = 1. Then g sends values from [−1, 1] to {±1},
contradicts the Intermediate Value Theorem in Calculus, so g cannot be continuous.

For n > 1, the story gets more complicated; we need further methods. As a
way of looking at it intuitively, though, consider what the function g does: since it
pulls the disk to its edge, it will need to rip it somewhere; as a result, g must be
discontinuous somewhere. To show this rigorously, we will need to develop ways of
measuring “holes” in n dimensions. �

Remark 0.12. This does not show how to find the fixed point (this is a con-
sequence of argument by contradiction).

Remark 0.13. Instead of focusing on f , we turned our attention to g. This
is a nice feature of this argument: we turned from a question about points to one
about the existence of continous maps between spaces.

We won’t get to this for weeks, but a basic strategy in Algebraic Topology is to
turn questions about spaces and continuous maps between them into problems in
Algebra, such as problems about groups/vector spaces and homomorphisms/linear
maps.
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Another classic problem in Topology is one of classification:

Question 0.14. Can we come up with a theory of classification for spaces?

Well, there are so many spaces that we can’t really classify them all, but we
would very much like to classify all “nice” spaces, for example manifolds. These
are spaces which are everywhere locally modeled on the same Euclidean space Rn.

Example 0.15. S2, which everywhere locally looks like R2.

Remark 0.16. The only 1-dimensional manifolds are S1 and D1, and combi-
nations thereof.

Example 0.17. An example of a 2-dimensional manifold is the torus (or donut),
which has one hole.

Figure 0.18.

Surfaces similar to the torus but with more holes are also 2-dimensional mani-
folds. This is an infinite family of 2-dimensional manifolds. In general, the number
of holes is called the genus, denoted by g.

Example 0.19. RP2, the real projective space of dimension 2, which cannot
be constructed in three dimensions (but can be in four). It can be constructed as
follows: take D2, which has S1 as its edge, and the Möbius band, which also has
S1 as its edge. Since they have the same edge, we just glue them together along
their edge. This yields RP2. There are many other constructions of RP2.

This can be generalized to an infinite family of manifolds in higher dimensions,
for example, using D3 and the Klein bottle.

A third classic question is as follows:

Question 0.20. Given an n-dimensional manifold Mn, what is the smallest N
such that Mn can be embedded in RN (notated Mn ↪→ RN )?

Happily, we know the following upper bound on N :

Theorem 0.21 (Whitney Embedding Theorem). Every n-dimensional mani-
fold can be embedded into R2n.

In fact, it is not hard to prove that Mn ↪→ R2n+1; it takes a bit of work to
get it down to 2n. So the general question is somewhat closed, but it is still an
interesting question ask when given a specific manifold, what is the smallest N that
it fits into?

There are also deep connections between Topology and Analysis.

Example 0.22. Consider a manifold, and a vector field on the manifold. Must
it be zero somewhere?

Theorem 0.23 (Poincaré-Bendixson Theorem). Every manifold on S2k has a
point at which the vector field is zero.

This is normally a problem in Ordinary Differential Equations, but it is also a
problem in Topology.
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CHAPTER 1

Topological Spaces

In order to talk about most things about topological spaces, we need to set down
a lot of basic things: we want to have things with a structure that is concrete.

1.1. Sets and Functions

We start by reviewing some basic notions of sets and functions.
Recall some examples of basic and familiar sets:

Example 1.1.1. The natural numbers N, the integers Z, the rationals Q, the
reals R, the complex numbers C, etc.

Recall the basic notions of intersection, union, subtraction, distributivity and
DeMorgan’s Laws, and products.

Definition 1.1.2. A function, written f : A → B or A
f→ B, means that we

associate each element a ∈ A with some f(a) ∈ B. More formally, we can describe
f using a relation S = {(a, f(a)) | a ∈ A} ↪→ A×B.

We have composition of function. We can write these as A
f→ B

g→ C, or
(g ◦ f)(a) = g(f(a)).

The concepts of injectivity and surjectivity are key. Again, let f : A→ B.

Definition 1.1.3. f is injective if f(a1) = f(a2) =⇒ a1 = a2. f is surjective
if for each b ∈ B, there is some a ∈ A such that b = f(a). If f is both injective
and surjective, we say that f is bijective and then we can talk about inverses,
f−1 : B → A, such that f−1(f(a)) = a.

The bijections from a set A to itself form a group, called the Permutation
Group. Bijections preserve structure of sets; functions that preserve structure of
topologies are called homeomorphisms. We will get to those later.

We also have the notions of cardinality. If f : A → B is a bijection, then we
say that A and B have the same cardinality, which we denote by |A| = |B|.

Example 1.1.4. The countable sets all have the same cardinality: |N| = |Z| =
|N2| = |Q|. We have the uncountable sets, that have the same cardinality as R.

Exercise 1.1.5 (Cantor Diangolization Trick). Prove that |N| 6= |R|.

We have the notion of a power set of a set A, denoted as 2A, which is the set
of all subsets of A. The cardinality of 2A is strictly larger than the cardinality of
A.

Exercise 1.1.6. Prove that |A| 6= |2A|.

7



8 1. TOPOLOGICAL SPACES

Exercise 1.1.7 (Schroeder-Bernstein Theorem). Let f : A→ B and g : B → A
be injective. Prove that there is then some h : A→ B that is a bijection.

Hint: First, as a special case, try A = B = [0, 1], and set f(x) = x/3 and
g(x) = x. Find h such that for some x, h(x) = f(x), and for the rest, h(x) = g−1(x).

1.2. Topological Spaces

Definition 1.2.1. A topological space or topology is an ordered pair (X,O)
where X is a set and O is a set of subsets of X, called open sets, satisfying three
rules:

(1) ∅, X are open.
(2) If {Uα | α ∈ Λ} are open sets, then

⋃
α Uα is open.

(3) If U, V are open, then U ∩ V are open.

When the context is clear, we will refer to X as the topological space and drop
O from our notation.

Definition 1.2.2. A set F ⊂ X is closed if X − F is open.

Example 1.2.3. Consider the set R where open sets are unions of open intervals
(a, b). Clearly, ∅,R are open, so condition (1) is satisfied. Furthermore, it is obvious
that condition (2) is satisfied. It remains to show that the intersection of open sets
are open, that is

(⋃
α(aα, bα)

)
∩
(⋃

β(cβ , dβ)
)

is open.

Definition 1.2.4. A basis B for a topology (X,O) is a set of open sets so that:

(1) Every open set in O is a union of elements of B
(2) If U1, U2 ∈ B, then U1 ∩ U2 =

⋃
k Uk where Uk ∈ B for all k.

A topology can be generated by multiple bases.
We call open sets generated by B the unions of elements of B.

Example 1.2.5 (Trivial (or Indiscrete) Topology). For X, the only open sets
are ∅ and X.

Example 1.2.6 (Discrete Topology). For X, let all subsets of X be open.

Example 1.2.7. For C, let the open sets be ∅, C, and C − A where A is the
set of zeroes of some polynomial in one variable with complex coefficients.

Example 1.2.8 (Zariski Topology). A generalization of the previous: for Cn,
let the open sets be ∅, Cn, and Cn − A where A is the set of common solutions to
a system of polynomials in n variables and with complex coefficients.

Definition 1.2.9. The interior of a set A, Int(A), is the union of all open sets
U ⊂ A. The closure A is the intersection of all closed sets F ⊃ A. We can also
reformulate Int(A) as Int(A) = X − (X −A). The boundary ∂A is A− Int(A).

1.3. Metric Spaces

Definition 1.3.1. A function d : X×X → R is called a metric if for x, y, z ∈ X:

(1) d(x, y) > 0 and d(x, y) = 0 ⇐⇒ x = y
(2) d(x, y) = d(y, x)
(3) (Triangle Inequality) d(x, z) 6 d(x, y) + d(x, z)

A space with a metric is a metric space.
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Example 1.3.2. The Euclidean spaces R with d(x1, x2) = |x1 − x2| and the

generalization Rn with d(~x, ~y) =
√∑n

j=1(xj − yj)2.

Example 1.3.3 (An exotic example of a metric space: the p-adic numbers).
For some prime p, we can write each integer m as m = pLq where p, q are relatively
prime. Define vp(m) = L. Then we can define a metric d(m,n) = p−[vp(m−n)].

Definition 1.3.4. An open disk around a point x is D̊r(x) = {y|d(x, y) < R}.
The Metric Topology is the one where open sets are the unions of open disks.

Proposition 1.3.5. The intersection of two open disks is a union of open disks.

Proof. Let D̊a(R) and D̊b(S) be two open disks, and z be in their intersection.
Take Dmin{R−d(a,z),S−d(b,z)}(z), which, by the triangle inequality, is a subset of

D̊a(R) ∩ D̊b(S) by the triangle inequality. Hence around every point point in their
intersection, we can find an open disk, so the intersection is a union of open disks.

�

Remark 1.3.6. Only finite intersections of open disks are open. For example,
in R, take

⋂∞
n=1(− 1

2n ,
1

2n ) = {0}, which is closed.

1.4. Constructing Topologies from Existing Ones

We now discuss some standard ways of construcing new topological spaces from
existing ones.

A space can induce a topology onto its subsets.

Definition 1.4.1. Let X be a space. If we have A ⊂ X, then the subspace
topology of A is defined so that the open sets of A are the the sets A ∩ U where U
is open in X.

We can also construct topological spaces using equivalence relations.

Definition 1.4.2. Let X be a space with an equivalence relation ∼. Then take
the map π : X → (X/∼) sending a 7→ [a]. Then the quotient topology on X/∼ is
defined so that the open sets of X/∼ are the sets [U ] where the sets π−1(U) are
open.

Example 1.4.3. Consider the equivalence relation ∼ over X = [0, 1]2 such that
(x, y) ∼ (x, y) for (x, y) ∈ (0, 1) × [0, 1] and (0, t) ∼ (1, 1 − t). Then X/∼ is the
Mobius strip.

Example 1.4.4. Given two copies of a space X, X1 and X2, then take (X1 ∪
X2)/∼ where for u ∈ X, if we call the copies of u in X1 and X2 by u1 and u2,
respectively, then u1 ∼ u2. Then (X1 ∪X2)/∼ = X.

We construct the topology of the product of two spaces as follows:

Definition 1.4.5. Let X,Y be topological spaces. Then the product topology
of X×Y is defined so that the open sets U×V ⊂ X×Y are the ones where U ⊂ X
and V ⊂ Y are open. Similarly, we can define the product topology on a finite
product X1 × . . .×Xn.
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Example 1.4.6. The cone on X, C(X), is obtained by (X × I)/(X × {1}). It
is equivalent if we quotient by X × {0}. The cone on Sn−1 is Dn.

C(X)

X

Figure 1.4.7.

Example 1.4.8. We can describe the punctured plane as a product: R2 \{0} =
S1 × R+, using polar coordinates.

Exercise 1.4.9. Describe Rn \ {0} as a product space.

Exercise 1.4.10. Describe Sn \ {2 points} as a product.

Although some of these definitions may seem somewhat arbitrary, they are
motivated by the concept of continuity: they are useful constructions such that the
functions mapping the existing spaces to the new spaces are continuous. We will
visit continuity shortly.

We now talk about a fourth way of constructing topologies from existing ones:
gluing.

Definition 1.4.11. Gluing two spaces is done as follows: given two spaces
X,Y ; some subset A ↪→ X; and a continuous function f : A → Y , let the set
X ∪A Y be obtained from (X t Y )/∼ where ∼ is given by u ∼ u for u ∈ X − A,
v ∼ v for v ∈ Y − f(A), and w ∼ f(w) for w ∈ A. Then X ∪A Y is a space that
inherits its topology from X and Y .

Example 1.4.12. Take two n-dimensional disks Dn
1 and Dn

2 . Glue them to-
gether along their edges Sn−1. The result is Dn

1 ∪Sn−1 Dn
2 = Sn, the n-dimensional

sphere.

Dn
1

Dn
2

Sn−1

Figure 1.4.13.

As an alternate construction, let Sn−1
1 and Sn−1

2 denote the two edges of the
cylinder (or equatorial band) Sn−1×I where I is some interval, usually the standard
interval [0, 1]. Then Dn

1 ∪Sn−1
1

(Sn−1 × I) ∪Sn−1
2

Dn
2 = Sn.
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Example 1.4.14. We can define the real projective space RP1 in the following
equivalent ways:

(1) The set of all lines through the origin in R2

(2) [0, 1]/∼ where 0 ∼ 1
(3) The circle S1

In a similar mannar, we can define RP2 as follows:

(1) The set of all lines through the origin in R3

(2) S2/∼ where u ∼ −u for u ∈ S2

(3) D2/∼ where u ∼ −u for u ∈ S1 ↪→ D2

(4) Take D2 and the Mobius strip M . Note that ∂D2 = ∂M = S1. Then
glue them together in the obvious manner along S1 to obtain D2 ∪S1 M .

The last construction can be hard to visualize. We can equivalently do the same
thing by taking S2 = D2

1 ∪S1
1

(S1 × I) ∪S1
2
D2

2, and we can get D2 ∪S1 M = S2/∼
where u ∼ −u for u ∈ S2, since (D2

1 ∪D2
2)/∼ = D2 and (S1 × I)/∼ = M .

Note that since we can shrink D2 to a single point, we can equivalently view
the construction as M/S1.

All of these constructions have obvious analogues in higher dimensions.

Exercise 1.4.15. Give an example where X,Y are disjoint spaces, A ↪→ X,
f, g : A → Y are homeomorphisms into their images, but X ∪A,f Y and X ∪A,g Y
are not homeomorphic.

Example 1.4.16. The suspension of X, Σ(X) is given by gluing two cones of
X along their edges. This is equivalent to (X × I)/∼ where (x1, 0) ∼ (x2, 0) and
(x1, 1) ∼ (x2, 1) for x1, x2 ∈ X.

Note that Σ(S−1) = S0.

Suspension is useful because it moves the dimension up, and many problems in
topology get simpler as the dimension gets higher.

Exercise 1.4.17. Determine what Σ(Sn) is. Furthermore, determine Σk(Sn)
for any k, including 0.





CHAPTER 2

Properties of Topological Spaces

2.1. Continuity and Compactness

Definition 2.1.1. Let f : X → Y be a function between two topological
spaces. f is continuous if for each open set U ⊂ Y , then f−1(U) = {x | f(x) ∈ U}
is open.

The following is a basic fact:

Theorem 2.1.2. Let f : X → Y be a function between two metric spaces. Then
the following are equivalent:

(1) f is continuous.
(2) For every x ∈ X and some ε > 0, then there is some δ > 0, δ > 0 such

that dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε.

The proof is not difficult; it only requires unwinding the definitions of open sets
and open disks in metric spaces.

Proof. Suppose f is continuous. Then for a ∈ X and ε > 0, D̊ε(f(a)) is

open in Y . Since f is continuous, f−1[D̊ε(f(a))] is open in X. Since open sets in

X are unions of open disks, a ∈ f−1[D̊ε(f(a))] can be found in some open disk

D̊R(b) ⊂ f−1[D̊ε(f(a))]. Since D̊R−d(a,b)(a) ⊂ D̊R(b) ⊂ f−1[D̊ε(f(a))], setting
δ = R− d(a, b) gives us (1).

In the other direction, let V be open in Y , and a ∈ f−1(V ). Since V is open

there is some open disk D̊εa(f(a)) ⊂ V . Then there is some δa > 0 such that

D̊δa(a) ⊂ f−1[D̊ε(f(a))]. Then since f−1(V ) is contained within
⋃
a∈f−1(V ) D̊δa(a)

and vice versa, f−1(V ) is open. �

Definition 2.1.3. A bijection f : X → Y between two topological spaces is
a homeomorphism if f is a bijection of open sets, that is, f and f−1 are both
continuous.

We will now talk about a very important concept in Topology: compactness.

Definition 2.1.4. Let {Uα} be a set of open sets. We say {Uα} is an open
cover of a set A if A ⊂

⋃
α Uα. A finite subcover is a finite subset of {Uα} that is

still an open cover of A.

Definition 2.1.5. A topological space X is compact if for each open covering
of X, there exists a finite subcover.

The following theorem is a major motivation for the notion of compactness, as
the properties outlined make many things, like integration, simple.

Theorem 2.1.6. If f : X → R is continous and X is compact, then

13



14 2. PROPERTIES OF TOPOLOGICAL SPACES

(1) f is bounded.
(2) f achieves its maximum and minimum.
(3) If (X, d) is a metric space with the metric topology then f is uniformly

continuous.
(4) Each sequence x1, x2, . . . has a convergent subsequence

xi1 , xi2 , . . . , xiL , i1 < i2 < · · · < iL,

i.e. there is some p ∈ X such that

lim
j→∞

d(xij , p) = 0.

Proof. (1) Note that R =
⋃∞
i=1(−i, i). Since f is continuous, then X =⋃∞

i=1 f
−1(−i, i). But since X is compact, it can be covered by finitely many sets

(−i, i). Then there is some iα such that −iα 6 f(x) 6 iα for x ∈ X. So f is
bounded.

(2) Since f is bounded, then for some K > 0 such that −K 6 f(x) 6 K.
Take the least upper bound (LUB) of f(X). If the LUB is not achived, then⋃∞
i=1 Ui = (−∞,LUB − 1/2i) contains f(X), so {f−1(Ui)} is an open cover of

X. Since X is compact, there is a finite subcover, so for some finite N we have
f(X) ⊂ UN , a contradiction since N < LUB. A similar argument holds for the
greatest lower bound.

(3) For ε > 0, we need δ > 0 so that d(x1, x2) < δ =⇒ d(f(x1), f(x2)) < ε.
For continuous f : X → Y with their respective metrics, and X compact, for each
a ∈ X set δa so that d(a, x) < da =⇒ d(f(a), f(x)) < ε/2. The open disks

{D̊δa/2(a)} form an open cover of X; since X is compact there is a finite subcover

of open disks around N points {a1, . . . , aN}. Define δ = 1
2 min{δa1 , . . . , δaN }. Let

x1, x2 ∈ X where d(x1, x2) < δ. From the finite subcover we can find some open
disk DδaJ /2

(aJ) so that d(x1, aJ) < δaJ/2. We also have d(x1, x2) < δ 6 δaJ/2,

so we have d(aJ , x2) < δaJ . Since x1, x2 are both found in DδaJ
(aJ), we have

d(f(x1), f(aJ)) < ε/2 and d(f(aJ), f(x2)) < ε/2, so d(f(x1), f(x2)) < ε.
(4) If X is a finite set it is obvious. Otherwise, for sake of contradiction assume

instead that there is no convergent subsequence. Then let S = {xi}, and p ∈ X−S.
We can find a disk D of radius ε(p) sufficiently small such that Dε(p)(p) ∩ S = ∅.
Otherwise if p ∈ S then there are finitely many i with xi = p. We can find a disk
D of radius ε(p) sufficiently small such that Dε(p)(p)∩S = {p}. Consider the open

cover of X by {D̊ε(p)(p) | p ∈ X. Since X is compact, there is a finite subcover

{D̊ε(pj)(pj) | j = 1, . . . , N}, so the union of these finite open disks cover all of S,
but each contains only a finite number of points in S, a contradiction. �

Theorem 2.1.7. The following facts are also known about compactness:

(1) If f : X → Y is continuous, then X is compact implies that Y is compact.
(2) If X and Y are compact, then X × Y is compact.
(3) If [−K,K] are compact, then [−K,K]n is compact.
(4) A ⊂ Rn is compact if and only if it is closed and bounded.

Exercise 2.1.8. Prove Fact 2.1.7(2).

Exercise 2.1.9. Prove that a closed subspace of a compact space is compact.
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2.2. Hausdorff Spaces

Proposition 2.2.1. A is a closed and bounded subset of Rn if and only if A
with the subspace topology is compact.

Definition 2.2.2. A space X is Hausdorff if for x, y ∈ X there exist open
Ux, Uy ⊂ X such that x ∈ Ux, y ∈ Uy, and Ux ∩ Uy = ∅.

Example 2.2.3. Metric spaces are Hausdorff.

Lemma 2.2.4. If A ⊂ X and X is Hausdorff, then A being compact implies
that A is closed.

2.3. Connectedness

We will discuss two notions of connectedness: connectedness and the stronger
condition of path connectedness.

Definition 2.3.1. A space X is said to be connected if for any decomposition
of X into two open sets, X = A∪B where A∩B = ∅, then either A = X or B = X
and the other is empty.

Exercise 2.3.2. Show that if f : X → Y is a continuous surjective map
between spaces, then X is connected implies Y is connected.

Before we talk about path connectedness, we need the definition of a path.
These will always be described using a parametrization.

Definition 2.3.3. A path in a space X is a continuous function ω : I → X.
p = ω(0) is called the initial point and q = ω(1) is the terminal point. These are
the end points of ω, and ω is a path from p to q.

Remark 2.3.4. If there is a path from p to q then it is obvious that there is a
path from q to p.

Definition 2.3.5. The inverse path is ω−1(t) = ω(1− t) for 0 6 t 6 1.

A useful thing we can do is splice two paths together.

Definition 2.3.6. Given a path α from p to q and path β from q to r, we can
obtain the product path α · β from p to r given by

α · β =

{
α(2t) 0 6 t 6 1

2

β(2t− 1) 1
2 6 t 6 1

.

Remark 2.3.7. Note that this operation is not associative, because the param-
eterization is different. For example, if we have paths α from p to q, β from q to r,
and γ from r to s, then

(α ·β) ·γ =


α(4t) 0 6 t 6 1

4

β(4t− 1) 1
4 6 t 6

1
2

γ(2t− 1) 1
2 6 t 6 1

whereas α ·(β ·γ) =


α(2t) 0 6 t 6 1

2

β(4t− 2) 1
2 6 t 6

3
4

γ(4t− 3) 3
4 6 t 6 1

We can define the trivial path at p ∈ X by ep(t) = p for 0 6 t 6 1, but by the
previous remark, this does not act as an identity element.

Definition 2.3.8. A space X is called path connected if given any two points
p, q ∈ X there is a path from p to q.



16 2. PROPERTIES OF TOPOLOGICAL SPACES

Example 2.3.9. We know that I is connected.

Exercise 2.3.10. Show that if a space is path connected, then it is connected.

Example 2.3.11 (A space that is connected but not path connected). Take
the Y axis unioned with the graph {(t, sin 1

t ) | t > 0}. Take a point p on the graph
and a point q on the Y axis, there is no path from p to q since it would need to go
through infinitely many cycles of sin 1

t . However, the space is connected.

Figure 2.3.12.

The concept of multiplication of paths by itself is not so exciting. We could
work with it even if it does not have commutativity, but it does not even have
associativity. So we need something better.



Part II

The Fundamental Group





CHAPTER 3

Basic Notions of Homotopy

3.1. Homotopy of Paths

We will now discuss the concept of homotopy of paths. Define a relation, called
homotopy, between two paths with given endpoints. The idea is a parametrized
deformation of paths without moving the endpoints.

Example 3.1.1. If we have two paths α and β from p to q around half of a
torus, they are homotopic, but if we have another path γ also from p to q but going
around the other half, γ is not homotopic to α and β because we cannot deform it
through the “hole” in the torus.

Definition 3.1.2. A homotopy of paths α and β from p to q in X is a con-
tinuous function H : I × I → X parametrized by (t, s) with H(t, 0) = α(t),
H(t, 1) = β(t), H(0, s) = p, and H(1, s) = q. α and β are homotopic, written
α ∼

h
β, if there is a homotopy of α and β.

•p •q

β

α

or p q

β

α

H

Figure 3.1.3.

This is an equivalence relation among paths from p to q. If α ∼
h
β and β ∼

h
γ,

then α ∼
h
γ.

p q

α

H1

β

p q

γ

H2

 p q

γ

β

α

H2

H1

Figure 3.1.4.
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Exercise 3.1.5. If α ∼
h
β and β ∼

h
γ, give an explicit reparametrization to

show that α ∼
h
γ.

The notion of homotopy is compatible with the idea of path multiplication. So
if we have two paths α ∼

h
β from p to q and γ ∼

h
δ from q to r, we have α · γ ∼

h
β · δ.

p

α

β

H1 q r

γ

δ

H2  p r

β · δ

q

α · γ

H2H1

Figure 3.1.6.

Exercise 3.1.7. Given two paths α ∼
h
β from p to q and γ ∼

h
δ from q to r,

give an explicit reparametrization to show that α · γ ∼
h
β · δ.

In fact, using homotopy we obtain associativity for path multiplication:

Proposition 3.1.8. Given paths α from p to q, β from q to r, and γ from r
to s, we have (α · β) · γ ∼

h
α · (β · γ).

p q r s

α β γ

α β γ

Figure 3.1.9.

Exercise 3.1.10. Give an explicit parametrization to show (α·β)·γ ∼
h
α·(β ·γ).

Recall the trivial path ep(t) = p for 0 6 t 6 1. We noted that this does not
function under normal equality as an identity element due to different parametriza-
tion. On the other hand, under homotopy, the trivial path does indeed act as an
identity element.

Exercise 3.1.11. Given a path α from p to q, write out a homotopy in terms
of alpha showing α · eq ∼

h
α.

Remark 3.1.12. We can show similarly that ep · α ∼
h
α.

Example 3.1.13. If we go from p to q and back along the same path, this
is not the same as having not having moved at all. Formally, for α from p to q,
α · α−1 6= ep. However, α · α−1 ∼

h
ep.
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Exercise 3.1.14. Given α from p to q, write out a homotopy in terms of alpha
showing α · α−1 ∼

h
ep.

Unfortunately, since multiplication cannot always be performed between paths,
we do not yet have a group! However, if we restrict our attention to only loops, we
can achieve a group.

3.2. The Fundamental Group

Pick a point x ∈ X. We call this the basepoint. A loop based at x is a path
whose endpoints are both x. We will denote by [α] the homotopy class of α.

Definition 3.2.1. Let π1(X,x) = {loops based at x}/∼
h

, the set of all loops

based at x up to homotopy.

Since all loops based at x can be multiplied together and we have shown asso-
ciativity, identity, and inverse, we arrive at the following:

Proposition 3.2.2. π1(X,x) is a group.

We call π1(X,x) the fundamental group of X. It turns out to also be the first in
a whole family of groups, so it is also called the first homotopy group. Historically,
it has also been called the Poincaré group, which is no longer used since his name
is attached to many other groups as well.

The following is an interesting result on homotopy and the fundamental group.
Recall that X is convex if given u, v ∈ X ⊂ Rn then (tu + (1 − t)v) ∈ X for

0 6 t 6 1.

Proposition 3.2.3. If X ⊂ Rn is convex, then for p, q ∈ X and any paths α, β
from p to q are homotopic.

Proof. We simply linearly interpolate: H(t, s) = (1− s)α(t) + sβ(t). �

Corollary 3.2.4. If X is convex, then the fundamental group is given by
π1(X,x) = {[ex]}, which we also notate as 0.

Definition 3.2.5. If X is a path connected space with π1(X,x) = 0, we say
that X is simply connected .

Intuitively, this means that there are no one-dimensional holes. We will explain
this in more detail shortly. Note that while convexity implies simply connectedness,
the converse does not hold.

There are several ways to think about loops based at x ∈ X:

(1) A path I
ω→ X where ω(0) = ω(1) = x.

(2) A path S1 γ→ X with γ(1, 0) = x. This is essentially the same as the
previous since S1 = I/(0 ∼ 1).

(3) A map R δ→ X with δ(0) = x and δ(R \ compact set) = x.

Using these notions, we can get the following:

Proposition 3.2.6. To say that [α] = e in π1(X,x) is equivalent to saying α
regarded as a map S1 → X extends to a continuous map D2 → X. In other words,
the loop α can be “filled in”.
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Proof. Assume [a] = e. We are given some homotopy H that can be con-
sidered as a unit square where the left, bottom, and right sides all map to the
basepoint x. Then if we quotient the unit square by these three sides, we get the
disk D2.

x x

α

x
x x

x

=

α

Figure 3.2.7.

In the other direction, using the mapping q : I × I → (I × I)/three sides = D2

and the map L : D2 → X such that L |S1= α, we get the map L ◦ q is a homotopy
of α to the trivial map. �

Corollary 3.2.8. To say that π1(X,x) = 0 is equivalent to saying that any

mapping S1 γ→ X can be extended to D2.

Remark 3.2.9. Any sphere is simply connected because any path on it can be
filled in, but a torus is not because a loop around hole cannot.

The following proposition is a very powerful one.

Proposition 3.2.10 (Independence of Basepoint). If X is a path connected
space and p, q ∈ X, then π1(X, p) ∼= π1(X, q).

Proof. Pick a path ω from p to q. Now define Φω : π1(X, p) → π1(X, q) by
Φω([α]) = [ω−1αω] ∈ π1(X, q).

We first show that Φω is well-defined. If [α] = [β] in π1(X, p) then we have
ω−1αω ∼

h
ω−1βω, so that [ω−1αω] = [ω−1βω] in π1(X, q).

Next, we check that Φω is homeomorphic. That is, Φω([α][γ]) = Φω([α])Φω([γ])
in π1(X, q). Well, the LHS is ω−1αγω and the RHS is (ω−1αω)(ω−1γω). Since
homotopy preserves associativity and inverse, we can cancel to see that they are
equal.

In a similar fashion, we can use Φω−1 the other way.
The last thing to do is to check that Φω−1 = Φ−1

ω . Take Φω−1 ◦ Φω([α]). This
is [(ω−1)−1(ω−1αω)ω−1], which is just [α]. The opposite direction is similar. �

This is not completely satisfying. There are many isomorphisms between
spaces. But we often want a natural isomorphism. However, we have not shown
that there is a natural isomorphism from π1(X, p) to π1(X, q).

Remark 3.2.11. The choice of isomorphism from π1(X, p) to π1(X, q) may well
depend on the choice of the path ω from p to q.
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3.3. Excursion: Basic Notions of Group Theory

We will now review some useful group theory.

Definition 3.3.1. A homomorphism ϕ between two groups G,H is a map such
that ϕ(αβ) = ϕ(α)ϕ(β) for α, β ∈ G.

Definition 3.3.2. By the kernel of G we mean Ker(ϕ) = {g ∈ G|ϕ(g) = e}.

Exercise 3.3.3. Show that Ker(ϕ) is a subgroup of G.

Definition 3.3.4. A homomorphism ϕ is an isomorphism if ϕ is also a bijec-
tion. Then we write G ∼= H. This is an equivalence relation among groups.

Example 3.3.5. The group Z2 under addition is isomorphic to the set {±1}
under multiplication.

Definition 3.3.6. An isomorphism from G to itself is called an automorphism
of G; the set of all automorphisms from G to itself Aut(G) is a group under com-
position.

Example 3.3.7. The automorphism group of the integers Aut(Z) is {±1} ∼= Z2.

Example 3.3.8. The automorphism of Zp for p prime Aut(Zp) is Z×p , which is

{Zp \ {0} under ×}. A fundamental result in number theory is that Z×p ∼= Zp−1.

Definition 3.3.9. Given g ∈ G, consider ρg(α) = g−1αg. This operation is
called conjugation by g. This is an automorphism of G, and these are called the
inner automorphisms of G, denoted by Inn(G).

Exercise 3.3.10. Show that G is abelian if and only if Inn(G) = {IdG}.

A general remark about group isomorphisms: Given two isomorphisms α, β :
A→ B, we can view them as related in the following way:

β = β ◦ (α−1 ◦ α) = (β ◦ α−1) ◦ α

But βα−1 is an automorphism of B, so they differ by an automorphism of B.

Exercise 3.3.11. Show that β = α ◦ (automorphism of A).

Let us look again the Fundamental Group. Say we have two isomorphisms
Φα,Φβ from π1(X, p) to π1(X, q). Recall our definition that if γ is a loop based
at p in X then Φα[γ] = [α−1γα] and similarly, Φβ [γ] = [β−1γβ]. Comparing Φα
with Φβ , we see that each is equal to the other composed with automorphisms.
eg. Φβ−1 ◦ Φα, but Φβ−1 ◦ Φα[γ] = [βα−1γαβ−1] = [βα−1][γ][αβ−1]. This is
just the conjugate of [γ] by [αβ−1] ∈ π1(X, p). So Φβ is Φα composed with some
conjugation, so the isomorphisms are said to be “the same up to conjugation”. This
leads to the following:

Proposition 3.3.12. If we have isomorphisms Φα and Φβ from π1(X, p) to
π1(X, q), then one can be written as the other conjugated by some automorphism.

Corollary 3.3.13. If π1(X, p) is abelian, this isomorphism is independent of
the choice of the path.

This follows immediately from Exercise 3.3.10.
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Exercise 3.3.14. Show that conversely, if α is a path from p to q, so that
Φα : π1(X, p) → π1(X, q) then if Φα is conjugated with some automorphism, the
result is equal to some isomorphism Φβ : π1(X, p) → π1(X, q) for some choice of
β from p to q. In particular, whether or not a path-connected space X is simply
connected is independent of the choice of basepoint.

3.4. Maps Between Spaces and Induced Homomorphisms

Before we begin let us set down some notation. The notation X,x means that
we assume x ∈ X to be the basepoint. We often assume y = f(x), that is, f is
“basepoint-preserving”. We will also use the notation space+ to mean a space with
a basepoint, and map+ to mean a map that preserves basepoint.

Let f : X,x → Y,y be a continuous map between spaces. We would like to study
what this tells us about the relation between “holes” in X and “holes” in Y . To
this end, observe that f determines (“induces”) a corresponding homomorphism of
the fundamental groups f∗ : π1(X,x)→ π1(Y, y) given by f∗([γ]) = [f ◦ γ].

Proposition 3.4.1. f∗ is a homomorphism and is well-defined.

Note that we need to check that f∗ is well-defined since it is defined on equiv-
alence relations.

Proof. Suppose we have two loops γ and δ such that γ ∼
h
δ. To show that f∗

is well-defined, we need to show that f ◦ γ ∼
h
f ◦ δ. Well, if H is a homotopy from

γ to δ, then f ◦H is a homotopy from f ◦ γ to f ◦ δ. So f∗ is well-defined. Next, it
is obvious that f∗([α].[β]) = f∗([α]).f∗([β]), so f∗ is indeed a homomorphism. �

Example 3.4.2. If f(x) = y, that is, f is a constant map, then f ◦ γ is the
constant loop at y, since f∗([γ]) = [f ◦ γ] = [eY ]. In other words, f∗ = 0.

Example 3.4.3. If f(x) = IdX(x), then (IdX)∗ = Idπ1(X,x).

Proposition 3.4.4. The construction of induced maps satisfies the following
basic properties:

(1) Given IdX , this induces (IdX)∗ = Idπ1(X,x). This means that when we
move from topology to algebra, we preserve the identity.

(2) This is compatible with composition: Say f : X,x → Y,y and g : Y,y → Z,z
are continuous maps+. Then g∗ ◦ f∗ = (g ◦ f)∗.

Proof. We already have the preservation of identity by Example 3.4.3. Next,
(g ◦ f) ◦ (γ) = (g ◦ (f ◦ γ)), so (g ◦ f)∗([γ]) = g∗(f∗[γ]). �

This notion is often called naturality , but more properly, functorality.

Example 3.4.5. Suppose f : X,x → Y,y is a homeomorphism+. Let g = f−1,
then g ◦ f = IdX and f ◦ g = IdY . This induces f∗ : π1(X,x) → π1(Y, y) and
g∗ : π1(Y, y) → π1(X,x), such that g∗ ◦ f∗ = (g ◦ f)∗ = (IdX)∗ = Idπ1(X,x), and
similarly, f∗ ◦ g∗ = Idπ1(Y,y). So f∗ and g∗ are inverse isomorphisms of groups.

Example 3.4.6. Take S1 = {z ∈ C | |z| = 1}. We will see later that π1(S1) ∼=
Z. In analysis, this assigns each loop what is called a winding number. This is
the number of times the loop goes around the circle. Let gk : S1 → S1 where
k ∈ Z, k > 0 given by gk(z) = zk. Then (gk)∗ : π1(S1) → π1(S1). Let u = [IdS1 ].
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Then (gk)∗([u]) = [gk]. We can also view this as u ◦ . . . ◦ u︸ ︷︷ ︸
k times

= uk ∈ π1(S1), which

corresponds with k ∈ Z. So we can view this as (gk)∗ : Z→ Z where (gk)∗(n) = kn.
By the naturality property, if we have some (gl)∗, we have (gk)∗ ◦ (gl)∗ = (gkl)∗ is
just multiplication by kl.

Corollary 3.4.7. Homeomorphic spaces have isomorphic fundamental groups.

The fundamental group captures information about the holes, and the induced
maps captures what the maps are doing to the holes. We are throwing out so much
rich information, but we can analyze this so much more easily. Unlike spaces that
have uncountably many points, most of their fundamental groups are countable.
So we will end up converting problems in geometry to problems in algebra.

3.5. Homotopy of Maps and Spaces

Often we will be faced with too many continuous maps between spaces. So
just as we cut down the number of loops by imposing equivalences on them via
homotopies, we will introduce an equivalence relation among the continuous maps
from X to Y .

Definition 3.5.1. If f, g : X → Y are continuous maps, a homotopy of f to g
is a continuous map H : I ×X → Y with H(0, u) = f(u) and H(1, u) = g(u). If
there is a homotopy from f to g we write f ∼

h
g.

This is the notion of continuous deformations between maps.
f ∼
h
g is an equivalence relation among continuous maps from X to Y . Just as

with homotopy of paths, we just need to reparameterize.
If the homotopy preserves basepoints we will write f ∼+

h

g. This is again an

equivalence relation.

Proposition 3.5.2. If f ∼+
h

g, then f∗ and g∗ are equal as homomorphisms

π1(X,x)→ π1(Y, y).

Proof. Let γ be a loop in X. Define Γ(t, v) = (t, γ(v)) ∈ I×X for v ∈ X. Say
H is a homotopy from f to g, then H ◦Γ is a homotopy of loops f ◦γ to g ◦γ. Well,
[f ◦γ] = [g ◦γ] in π1(Y, y) so g∗([γ]) = f∗([γ]) and f∗ = g∗ are homomorphisms. �

Exercise 3.5.3. Show that if Y is convex in Rn, any two maps f, g : X → Y
are homotopic.

Example 3.5.4. Let f : S1 → S1 loop around three times then back once.
Then f∗ is multiplication by two.

Let us set down some more notation. {X,Y } is sometimes used to denote the
set of continuous maps from X to Y . In fact, we can give a natural topology on
this space, in which homotopy of maps desribes a path in this space. [X,Y ] is often
used to denote {X,Y }/∼

h
. We will use [X,Y ]+ to denote the subset that preserves

basepoint.

Example 3.5.5. [S1, Y,y]+ = π1(Y, y).
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In fact, in general, [Sk, Y,y]+ = πk(Y, y). It takes some work to show that these
are still groups.

The notion of homotopy equivalence underlies a large part of topology. Recall
that if f : X → Y is a homeomorphism and g = f−1, then f ◦ g = IdX and
g◦f = IdY . But we can live with a weaker notion than equality: for the fundamental
group we can just require homotopy. This leads to the following:

Definition 3.5.6. f : X → Y is a homotopy equivalence if there is a map
g : Y → X such that g ◦ f ∼

h
IdX and f ◦ g ∼

h
IdY . Then we say that X is

homotopic equivalent to Y .

This notion can easily be extended to preserve basepoints.
The following is an easy consequence of the previous discussion.

Proposition 3.5.7. If f is a basepoint-preserving homotopy equivalence, then
f∗ : π1(X,x)→ π1(Y, y) is an isomorphism.

Exercise 3.5.8. Prove Proposition 3.5.7.
Hint: Apply naturality and that homotopic maps have the same induced ho-

momorphisms.

Example 3.5.9. Rn is not homeomorphic to a point, but Rn is homotopic
equivalent to a point: take f : Point→ Rn and g : Rn → Point. Then g◦f = IdPoint

and f ◦ g ∼
h

IdRn .

So homotopy equivalence is much weaker than homeomorphism since it can
change dimension, but homotopy equivalence actually preserves the fundamental
group. We will get to this later.

Example 3.5.10. S1 is homotopic equivalent to R2 \ (1 point). Similarly, we
have R2 \ (k points) is k loops joined together at a point.

Example 3.5.11. S1 is homotopic equivalent to the annulus.

In fact, algebraic topology has trouble distinguishing between homotopic equiv-
alent spaces, but it is often easy to distinguish between spaces that are not just by
computing the fundamental groups.

Remark 3.5.12. A warning: if we are given an inclusion of spaces A,a
i
↪→ X,x

then the induced map i∗ : π1(A, a)→ π1(X, a) need not be injective.

Example 3.5.13. Take S1 i
↪→ D2. Then i∗ : π1(S1)→ π1(D2) maps Z→ 0.

3.6. Retractions

Definition 3.6.1. A subspace A
i
↪→ X is called a retract of X if there is a map

X
r→ A such that r ◦ i = IdA. Then r is called a retraction (of X to A.

The idea is that r pulls X back to its subspace A.

Example 3.6.2. Take S1 i
↪→ R2 \ {0}. Then r : R2 \ {0} → S1 given by

r(v) = v
‖v‖ is a retraction from R2 \ {0} to S1. The idea is that everything outside

gets shoved in and everything inside gets pushed out. We wouldn’t know what to
do with the origin, but happily that’s not present.
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Definition 3.6.3. Given two spaces X,x, Y,y, then X ∨ Y = (X ∪ Y )/(x ∼ y).
This is obtained by gluing two spaces together at a point.

Example 3.6.4. Take X
i
↪→ X ∨ Y and let y be the basepoint of Y . Then

r : X ∨ Y → X given by

r(u) =

{
y u ∈ Y
u u ∈ X

is a retraction. So X is a retract of X ∨ Y (and similarly, so is Y ).

Let us look at what retractions mean for the fundamental group of a space.

Let A,a
i
↪→ X,a

r→ A,a where r ◦ i = IdA. Then the induced maps are given by

π1(A, a)
i∗
↪→ π1(X, a)

r∗→ π1(A, a), where (r ◦ i)∗ = r∗ ◦ i∗ = (IdA)∗ = Idπ1(A). So
we get the same story in the induced map. The result of this is that i∗ is injective,
and so we can regard π1(A, a) as a subgroup of π1(X, a).

Example 3.6.5. Take the spaces and maps from Example 3.6.4. Then we

conclude that π1(X)
i∗
↪→ π1(X ∨ Y ) (similarly, π1(Y ) is a subset of π1(X ∨ Y ) as

well).

So this gives us the result that the fundamental group can tell us about whether
or not we can have a retraction between two spaces.

Example 3.6.6. We saw in Example 3.6.2 that R2 \ {0} retracts to S1. We
now show that R2 does not. We can see this by taking the induced map i∗ of the
inclusion map from S1 to R2. But since π1(S1) = Z and π1(R2) = 0, i∗ is not an
inclusion map.

Definition 3.6.7. Given an inclusion A
i
↪→ X, A is called a deformation retract

of X if there is a retraction X
r→ A with r ◦ i = IdA and i ◦ r ∼

h
IdX . This is called

a deformation retraction.

The idea is that the homotopy shrinks X down to its subspace A.

Example 3.6.8. Recall Example 3.6.2, with r(v) = v
‖v‖ . Using the homotopy

H(v, t) = tv + (1 − t)
(

v
‖v‖

)
, we see then that H(·, t) : R2 \ {0} → R2 \ {0} at

any time t, with H(v, 0) = v
‖v‖ and H(v, 1) = v. Hence we have a deformation

retraction.

So deformation retraction is kind of like a halfway point between homeomor-
phism and homotopy equivalence. In fact, the existence of a deformation retraction
implies homotopy equivalence. In fact, in practice, this is often how homotopy
equivalences arise! Recall that a homotopy equivalence of two spaces implies that
they have the same fundamental group. So whereas in any retraction i∗ is only
injective, in a deformation retraction i∗ is bijective.

Example 3.6.9. Take S1 i
↪→M where M is the Mobius strip. This is a defor-

mation retract, so S1 is homotopy equivalent to M and so π1(M) ∼= π1(S1) = Z.

Example 3.6.10. In Example 3.6.4 we saw that X is a retract of X ∨ Y , but
X is usually not a deformation of X ∨ Y . We will show later that often X ∨ Y has
a larger fundamental group that X.
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The following notion is sometimes used:

Definition 3.6.11. An inclusion A
i
↪→ X is a strong deformation retract if

there is a retract X
r→ A with a homotopy H : X × I → X with H(u, 0) = u,

H(u, 1) = (i ◦ r)(u) and (the extra definition) H(u, t) = u for u ∈ A, t ∈ I. That
is, A never moves.

It takes some more technical details to show, but in fact if there is a deformation
retract, we can modify it to obtain a strong deformation retract.

We will not talk much about strong deformation retracts.

Example 3.6.12. The retract from Example 3.6.2 is a strong deformation re-
tract.

Exercise 3.6.13. Show that Sn−1 is a deformation retract of Rn \ {0}.

Example 3.6.14. The inclusion
∨
k S

n−1 i
↪→ Rn \ {k points} is a (strong) de-

formation retract.

Definition 3.6.15. A subspace Y ⊂ Rn is called star-like if there is a point
y ∈ Y such that for any point u ∈ Y , the straight line segment {tu+(1−t)y | t ∈ I}
from y to u is in Y .

This is weaker than convex, as for convexity this must be true for any y ∈ Y ,
not just a fixed one. So convexity implies star-like.

Exercise 3.6.16. Show the following:

(1) If Y is star-like in Rn, any two maps f, g : X → Y are homotopic.
(2) If Y is star-like, then {y} ↪→ Y is a deformation retract.
(3) Conclude that Y is homotopic equivalent to a point.

Definition 3.6.17. A space is called contractible if it is homotopic equivalent
to a point.



CHAPTER 4

Comparing Fundamental Groups of Spaces

In order to compare different spaces, we would like to compute the fundamental
groups of various spaces.

4.1. Fundamental Groups of Product Spaces

Proposition 4.1.1. Given two spaces X,Y , the fundamental group of their
product is the product of their fundamental groups, i.e. π1(X×Y ) ∼= π1(X)×π1(Y ).

Proof. Take the projections p1 : X × Y → X and p2 : X × Y → Y . We have
the induced maps

(p1)∗ : π1(X × Y )→ π1(X) and (p2)∗ : π1(X × Y )→ π2(Y ).

Then we claim that (p1)∗× (p2)∗ : π1(X×Y )→ π1(X)×π1(Y ) is an isomorphism.
To see that (p1)∗ × (p2)∗ is surjective, take [α] ∈ π1(X), [β] ∈ π1(Y ). Then

[α× β] ∈ π1(X × Y ) satisfies (p1)∗ × (p2)∗([α], [β]) = [α]× [β].
To see that (p1)∗× (p2)∗ is injective, we just show that Ker ((p1)∗ × (p2)∗) = ∅.

Suppose we have a loop γ ∈ Ker ((p1)∗ × (p2)∗), we can write γ = (γ1, γ2). So
π1([γ]) = [γ1] = e ∈ π1(X) and similarly, π2([γ]) = [γ2] = e ∈ π2(Y ). Then we have
a homotopy H1 in X of γ1 to the constant loop. Similarly we have H2 in Y of γ2

to the constant loop. So we can combine these to get H1 ×H2 : S1 × I → X × Y ,
which is a homotopy of γ to the constant map. So [γ] is trivial. �

By induction, we can show that this works for products of even more spaces.
We won’t show this, but this actually works for infinite products as well.

Example 4.1.2. A torus T is homeomorphic to S1×S1. Thus the fundamental
group is π1(T ) = π1(S1) × π1(S1) = Z2. Similarly, the fundamental group of a n-
torus is Zn.

Example 4.1.3. More generally, for any space X, π1(X × S1) = π1(X)× Z.

This result about products is nice because if the fundamental groups of two
spaces are abelian, then so is the fundamental group of their product. Most funda-
mental groups are nonabelian, eg. the fundamental group of wedge of two spaces
that are not simply connected is never abelian. Later we will prove that every
group is the fundamental group of some space.

Corollary 4.1.4. Any product of simply connected spaces is simply connected.

Example 4.1.5. Any product of spheres is simply connected.

This shows that as we go up in dimensions, we get more and more simply
connected spaces.

29
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4.2. Fundamental Group of Glued Spaces

Recall that another way of constructing spaces is by gluing, so let us look at
the fundamental group of spaces glued together.

We will need some notions from group theory.

Definition 4.2.1. Given a group G, a set S ⊂ G is said to generate G if
G = {xα1

1 xα2
2 . . . xαkk | xk ∈ S, αk ∈ Z}, where we allow repeats. Equivalently, if the

smallest supergroup containing S is G. Then G is generated by S.

Example 4.2.2. Z2 is generated by {(1, 0), (0, 1)}.

Definition 4.2.3. A group is called finitely generated if it is generated by some
finite set S.

Exercise 4.2.4. Show that Q under addition is not finitely generated.

Remark 4.2.5. Any finite group G is trivially finitely generated, taking S = G.

In this course we will concern ourselves mostly with finitely generates spaces,
since for reasonable spaces, the fundamental group is generally finitely generated.

Consider the following example:

Proposition 4.2.6. Let X = A ∪ B where A,B are open subsets of X, with
a basepoint x ∈ A ∩B. Suppose A,B,A ∩B are path connected. Then π1(X,x) is
generated by π1(A, x) ∪ π1(B, x).

We will see later that this becomes the first part of what is known as Van
Kampen’s Theorem.

Remark 4.2.7. A warning: we do need to assume that A∩B is path connected.

Example 4.2.8. Consider X = S1 where A,B are each just over half of a loop,
on opposite sides of the circle.

A BA ∩B

Figure 4.2.9.

Then X = A ∪ B and π1(A) = 0 and π1(B) = 0. The problem arises because
A ∩B is disconnected.

Corollary 4.2.10. If A,B are simply connected and A∩B are path connected,
then X = A ∪B is also simply connected.

Example 4.2.11. Take X = Sn where n > 1. Decompose it into X = A ∪ B
where A,B are each just over half of a hemisphere, on opposite ends of the sphere.
Well, A ≈ D̊n is simply connected, and so is B. So we conclude Sn is simply
connected. Note that this works for n > 1 since the intersection A∩B, the equatorial
band, is in fact path connected.
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Corollary 4.2.12. If K is a set of generators for π1(A, x) and L is a set
of generators for π1(B, x), then K ∪ L is a set of generators for π1(X,x) where
X = A ∪B.

Example 4.2.13. Consider RP2, which is Mobius ∪S1 D2. Well, since D2 is
simply connected π1(D2) = {e}. On the other hand, the Mobius strip is homotopy
equivalent to S1, so π1(Mobius) = Z. Let w = [S1] be a generator for Z. We see
that π1(RP2) is generated by w. Notice that w2 = [edge of Mobius] which can be
filled in by D2, so w2 = e in π1(RP2). In summary, π1(RP2) is generated by w with
w2 = e. If w = e then π1(RP2) = 0. This turns out not to be true, but we cannot
prove this yet. The other possibility is that π1(RP2) = Z2, which is correct.

Remark 4.2.14. Here the Mobius strip and D2 are closed sets. However, we
can easily replace them by slighly larger open sets which are homotopy equivalent.
Then since they have the same fundamental groups as their closed counterparts,
we get the same conclusion.

Proof of Proposition 4.2.6. Let γ : I,0 → X be a continuous function
where γ(0) = γ(1) with A ⊂ X and B ⊂ X. Now consider γ−1(A) and γ−1(B).
These are open sets, so they are a union of intervals. Since I is compact, we can
cover each with finitely many such intervals. Now if overlapping intervals are in
γ−1(A), we can combine them to get fewer intervals. Then we can view γ−1(A)
and γ−1(B) as unions of intervals that alternate. We can make these into closed
subintervals by breaking the interval up choosing points in the overlaps. In other
words, we can choose 0 = t0 < · · · < tm = 1 such that each [ti, ti+1] lies in γ−1(A)
or in γ−1(B). Hence for any loop in X we can split it into paths.

Now for each γ(ti), pick a path δi from γ(ti) to the basepoint x ∈ A∩B. Denote
σi = γ([ti−1, ti]) ∈ A ∩B. Then γ = σ1.σ2. . . . .σm. Then we also have

γ ∼
h
σ1δ1δ

−1
1 σ2δ2δ

−1
2 . . . σn

where δiδ
−1
i are loops! Hence we now get the result:

[γ] = [σ1δ1][δ−1
1 σ2δ2][δ−1

2 σ3δ3] . . . [δ−n−11σn],

where each piece [δ−1
i−1σiδi] is a loop in A or B. �

4.3. Excursion: Combinatorial Group Theory

To obtain the second part of Van Kampen’s Theorem, we need yet more ideas
from combinatorial group theory.

4.3.1. Free Groups. Let L be a set, called the set of letters, and W (L)
the set of all words in the letters and their inverses (including the empty word).
The problem is that we can have the word xyx−1xy−1yx, where there are obvious
cancellations we have not done. Hence we can define Ŵ (L) as the set of words
without an adjacent letter with its inverse. Then we have the reduction map r :
W (L)→ Ŵ (L) that cancels any adjacent letter with its inverse. We will skip over
the details (as the proof can be found in any book on groups) that this map is
well-defined.

Definition 4.3.1. Define a multiplication among reduced words u and v by
uv = r(u followed by v). This is the obvious multiplication, and this forms a group,
called the free group on the set of letters L, written F (L) or FL.
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Example 4.3.2. If L = {l}, then F (L) = {`k} ∼= Z. This is often written F1.

Example 4.3.3. If L = {a, b} has two elements, then F2 = F (L) is much larger.

Exercise 4.3.4. In the free group of two generators F2, how many words are
there of length 2?

Well, there are at least 2m strings of length m, but at most 4m. So these are
large groups, since they grow exponentially in size.

In fact, there is an entire field of study about classifying groups based on how
quickly they grow in terms of length of string. Some grow polynomially, some grow
exponentially. The free group is the fastest growing group.

Let us take a small excursion to linear algebra. We can describe a basis in
two ways: the first is that all vectors in the space can be described as the sum of
multiples of basis elements; the second is that if B is a basis of V , given any other
vector space W and a function ϕ : B → W , then there exists a unique linear map
Φ : V →W which is ϕ on the restriction to the basis B.

B V

W

ϕ ∃!

Figure 4.3.5.

This is defined in the obvious way, writing v ∈ V as v = a1b1 + . . .+akbk where
B = {b1, . . . , bk} then Φ(v) = a1ϕ(b1) + . . . + akϕ(bk). (The minimality of B is
forced by the uniqueness of Φ.)

A similar story exists in free groups, since the letters are like a basis and the
words are like vectors. A free group F (L) has the following analogous property:
given any group W and a map ϕ : L → W , then there exists a unique homomor-
phism Φ : F (L)→W with Φ on the restriction to L is just ϕ.

L F (L)

W

ϕ ∃!

Figure 4.3.6.

Φ is defined as Φ(`±1
i1
`±1
ik
. . . `±1

ik
= ϕ(`i1)±1ϕ(`i2)±1 . . . ϕ(`ik)±1 where these

`i’s are in L. We could have defined the free group this way and then showed that
it is given by reduced words.

Remark 4.3.7. There are two problems with this: it is not obvious that there
is a group with this property, and it is not obvious that there is only one. The



4.3. EXCURSION: COMBINATORIAL GROUP THEORY 33

first can be solved by using F (L). The proof of uniqueness is as follows: suppose
there were two, F 1(L) and F 2(L), but since L ↪→ F 1(L) and L ↪→ F 2(L) there is
a unique homomorphism Φ1,2 : F 1(L) → F 2(L) and similarly Φ2,1 going back. It
remains to check that the composites are Id, but by the uniqueness of these maps
this follows easily.

Algebraists often prefer this more abstract definition since for any algebraic
structure there is some “free” structure that follows analogously.

Theorem 4.3.8. Every group is the quotient of a free group. In particular,
every finitely generated group is the quotient of a free group generated on a finite
set of letters.

Proof. Pick any set of generators K for a group G. Take F (K). Take the
map Φ : F (K) → G that extends a map ϕ : K → G. Well, Φ is a surjective
funciton, and G ∼= F (K)/Ker(Φ). �

Example 4.3.9. Using the free group Z, we can get Z2 = Z/2Z by quotienting
out by the even numbers.

However, to describe a group, it is not sufficient to just describe the generators;
we need more information. We want something of the form G = F/A. We could
describe A by picking generators for it, but this often yields a large and redundant
set.

Example 4.3.10. Suppose x, y are mapped to the non-trivial element, writ-
ing Z2 = F (x, y)/A we have A = {x2, y2, xy, yx}. For bigger groups and more
generators, this grows very quickly.

But we can take advantage of the fact that the kernel of any homomorphism is
not just a subgroup, but it is a normal subgroup (i.e. it is closed under conjugation).
So we don’t need to list all of the generators! This leads to the following:

Definition 4.3.11. A set of elements C ⊂ G where G is a group is said to
normally generate G if the elements of C and their conjugates (in G) generate G.

Example 4.3.12. Given a finite group G, G = F (S)/A where S is a finite
set and A is a subgroup normally generated by a finite set. To show that this is
true, use the multiplication table of G, which for a, b ∈ G gives c = ab ∈ G, then
(ab)c−1 = e. Then we can just write

G = F (G)/{(ab)c−1 | a, b ∈ G, c = ab}.

Definition 4.3.13. A presentation of of a group G is G = F/R where F is a
free group and R is the subgroup normally generated by a collection of elements,
called relations.

Example 4.3.14. Take a clock with k hours. Then there are 2k symmetries,
generated by a rotation σ and a flip τ . This is called D2k, the dihedral group of
order 2k. We can write a presentation as

D2k = {σ, τ | σk = τ2 = τστσ = e}.

All other relations are consequences of these three, i.e. they are conjugates of
products of these.
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Definition 4.3.15. A group G is finitely presented if there is a presentation of
G with finitely many generators and finitely many relations.

Note that if a set generates a group, then it normally generates the group, but
not vice versa.

Example 4.3.16. Take the group S3 = P (a, b, c). Then R = {(a b)} normally
generates S3.

Exercise 4.3.17. Prove that R = {(a b)} normally generates S3 but does not
generate it.

Remark 4.3.18. Similar results can be similarly shown for any Sn.

A common notation for the presentation of a group is G = {x1, . . . , xn | R},
which meansG = F (x1, . . . , xn)/〈R〉 where 〈R〉 is the normal subgroupK generated
by R and its conjugates.

Example 4.3.19. We can express Fn = {x1, . . . , xn | ∅}. We can also write
Fn = {x1, . . . , xn, y | y}.

Such an addition of a generator and then killing it off is often called stabilization
of presentation.

Example 4.3.20. Zk = {x | xk}

Example 4.3.21. As an example of a group that is finitely generated but not
finitely presented, start with Z∞ = Z⊕Z⊕ . . .. This is the subgroup of Z×Z× . . .
consisting of sequences with finitely many non-zero entries. This is generated by
x1 = (1, 0, 0, . . .), x2 = (0, 1, 0, . . .), x3 = (0, 0, 1, . . .), . . . , etc. Note that this group
is not finitely generated. Consider

G = {t, x1, x2, . . . | [xi, xj ] = e, txit
−1 = xi+1}

where [u, v] = uvu−1v−1 is the commutator. Notice that since tkx1t
−k = xk+1, G

is actually just generated by {t, x1}, but there are an infinite number of relations.
Hence G is finitely generated but not finitely presented.

Often, when given a presentation of a group, it may be hard to figure out what
group has been given.

Example 4.3.22. Take

G = {x, y, z | yxy−1 = x2, zyz−1 = y2, xzx−1 = z2}.
If G were made abelian, then it would only consist of only the trivial element (G is
called perfect). In fact, G = {e}, but this is not obvious! Take the same story on
four elements,

L = {w, x, y, z | xwx−1 = w2, yxy−1 = x2, zyz−1 = y2, wzw−1 = z2}.
But Serre observed that L is, in fact, not only nontrivial, but not finite!

There are ways to modify relations. The Tietze moves on relations are as
follows: If we have a relation R then

(1) w ∈ 〈R〉 =⇒ uwu−1 ∈ 〈R〉
(2) w1, w2 ∈ 〈R〉 =⇒ w1w2 ∈ 〈R〉
(3) w ∈ R =⇒ w−1 ∈ 〈R〉
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Theorem 4.3.23 (Tietze). Given G with 2 presentations G ∼= {X | R} and
G ∼= {Y | S}. These presentations are obtained from each other by a sequence of:

(1) Add a generator u and a relation u = e.
(2) Conversely, if a generator u appears only in the relation u = e, delete it.
(3) If u, v are in a set of relations, add uv.
(4) Conversely, if u, v, uv are in a set of relations, delete uv.
(5) If u is in a relation, add gug−1 for g ∈ G.
(6) Coversely, if u, gug−1 are in a relation, delete gug−1.
(7) If u is in a relation, add u−1.
(8) Conversely, if u, u−1 are in a relation, delete u−1.

Remark 4.3.24. These are all of the noncommutative analogs of Gaussian-
Jordan Elimination.

So we can enumerate all possible presentations of a group, but the trouble is
that we will never know what we are going to get!

The following is an unsolved problem:

Conjecture 4.3.25. Suppose G is a nontrivial group. Now add to its presen-
tation one generator and one relation. The result is still nontrivial.

The conjecture is known to be true if G is finite or if G has no elements of finite
order. Everything in between these two extremes is unknown.

4.3.2. Combining Groups to get Larger Groups.

Definition 4.3.26. There are two basic ways of combining two groups G =
{X | R} and H = {Y | S}: the direct product G×H and the free product G ∗H =
{X ∪ Y | R ∪ S}.

Example 4.3.27. Fk ∗ F` = Fk+`.

Example 4.3.28. Z2 ∗ Z2 = {a, b | a2, b2}. This is, in fact, an infinite group!
However, Z2 ∗ Z2/〈(ab)k〉 ∼= D2k = {σ, τ | σk = e, τ2 = e, τστ−1 = σ}

Exercise 4.3.29. Show that the two presentations in the previous example are
isomorphic.

Remark 4.3.30. If we add more relations to a presentation, we get a quotient
group.

Example 4.3.31. G ∗ {e} = G

Remark 4.3.32. We did not show thatG∗H is independent of the presentations
of G and H. There are two ways to check this: by using Tietze moves, or by using
the diagrammatic definition of the free product.

Remark 4.3.33. From the point of view of generators and relations, the direct
product is

G×H = {X,Y | R,S, [u, v] for u ∈ X, v ∈ Y }.

Example 4.3.34. Z2 × Z2 = {x, y | x2, y2, xyx−1y−1}.

So in fact, G×H is a quotient of G ∗H.
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The diagrammatic definition of the free product G ∗ H is as follows: Given
homomorphisms α : G→M and β : H →M , then there exists a unique homomor-
phism ρ : G ∗H →M where

ρ(g) =

{
α(g) g ∈ G
β(g) g ∈ H

.

We can write ρ = α ∗ β.

G H

G ∗H

M

α β
∃!

Figure 4.3.35.

If we assume the condition on M that α(G) commutes with β(H), then in fact
we have the direct product G×H.

The free product with amalgamation is given as follows: Given two groups
G = {X | R}, H = {Y | S} and a group A = {Z | ·} equipped with homomorphisms
i : A → G, j : A → H (in many applications, A is a subgroup of both G and H),
then

G ∗A H = {X,Y | R,S, i(u) = j(u) for u ∈ Z}
is the free product with amalgamation.

Example 4.3.36. G ∗G G = G.

Example 4.3.37. G ∗{e} H = G ∗H.

4.4. Van Kampen’s Theorem

Now we apply all of the previous definition.

Theorem 4.4.1 (Special Case of Van Kampen’s Theorem). Let X,x = A,x∪B,x
where A,B are open, x ∈ A∩B, and A,B,A∩B are path connected. Assume A∩B
is simply connected, then π1(X,x) = π1(A, x) ∗ π1(B, x).

Corollary 4.4.2. π1(X ∨ Y ) = π1(X) ∗ π1(Y ).

Example 4.4.3. π1(S1 ∨ S1) = Z ∗ Z. However, π1(S1 ∨ Sn) = Z for n > 1
since Sn is simply connected for n > 1.

Remark 4.4.4. Note that if π1(A ∩ B) 6= 0, this cannot be the right formula
because it counts π1(A ∩B) twice.

Theorem 4.4.5 (Van Kampen’s Theorem). Let X,x = A,x ∪ B,x where A,B
are open, with x ∈ A ∩ B and A,B,A ∩ B are path connected. Then we have
π1(X) = π1(A) ∗π1(A∩B) π1(B) using the inclusions i∗ : π1(A ∩ B) → π1(A),
j∗ : π1(A ∩B)→ π1(B).

Remark 4.4.6. i∗, j∗ may fail to be injective.
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Example 4.4.7. Take the torus and puncture it. This is homotopy equivalent
to S1 ∨ S1.

 ba

Figure 4.4.8.

Then the fundamental group of the punctured torus is Z ∗ Z. To reobtain the
Torus, we fill the hole back in: Torus = Punctured Torus ∪S1 D2. Then by Van
Kampen’s Theorem, π1(Torus) = Z ∗ Z ∗Z {e}. Well, j∗ : Z → {e} is empty, and
i : S1 → S1 ∨ S1 sends S1 around aba−1b−1, so

π1(Torus) = {a, b | aba−1b−1 = e} = Z× Z,

as we already knew.

Exercise 4.4.9. Compute the fundamental group of the Klein Bottle.

We quickly sketch a proof of Van Kampen’s Theorem.
Recall that there are two main things at work: the generators coming from the

two sides; and the relations identifying where the generators overlap. We already
looked at the first, where we broke up a loop to get paths on the two sides, and
modified these to get loops on each side.

Well, we can represent the generators by I → X and relations by I × I → X.
We can, using compactness, break the square into a bunch of little squares such
that each little square maps to A or B. One can easily rearrange these squares so
that each maps to A or B and the overlaps to A∩B, where the corner of each little
square maps back to the basepoint.

Example 4.4.10. A harder example of using Van Kampen’s Theorem: Take a
surface of genus g Σg. We can compute π1(Σg) as follows: puncture it, then the
result is homotopy equivalent to

∨
S1, so we get a result that is almost F2g:

π1(Σg) = {x1, y1, . . . , xg, yg | [x1, y1][x2, y2] · · · [xg, yg] = e}.

4.5. An Example from Knot Theory

We present a somewhat difficult example of using Van Kampen’s Theorem from
Algebraic Knot Theory.

Definition 4.5.1. A classical knot is K ↪→ S3 where K ≈ S1.

Remark 4.5.2. We can also view knots as in R3, but topologists prefer a
compact space so we use S3 = R3 ∪ {∞}.

Example 4.5.3. The bare circle in S3 is called the trivial knot or “unknot”.

Example 4.5.4. The trefoil:
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Figure 4.5.5.

Example 4.5.6. The figure “8”

Figure 4.5.7.

However, the definition is a bit unsatisfying, because it allows all kinds of wacky
objects.

Example 4.5.8. Take a “string” and give it one loop, then two loops, then
three loops, etc. then by the end loop it an infinite amount of times. Then connect
the two ends to bring it back. The result has “infinite knottedness”.

We usually want to avoid such things, so there are often various conditions
which exclude such objects:

(1) Use only piecewise-linear subsets of S3 homeomorphic to S1.
(2) Use differentiability (with ∂

∂t not zero).

(3) Assume the knot has a thickening to a copy of S1 ×D2.

We will knot show this, but assuming either piece-wise linearity or differentia-
bility implies that we can have a thickening.

Like with many things, we would like to classify all knots. One way is by
number of crossings. Now the trefoil is the only knot with three crossings and the
figure “8” is the only knot with four. The number of knots increases wildly with
the number of crossings. But this is not a good way to classify knots – after all,
we can start with a trillion crossings, but move things around and end up with no
crossings! So it is not obvious how many crossings a knot has. Let us make rigorous
these “moves”.

Definition 4.5.9. The Reidemeister moves are as follows:

(1) Take a strand and give it a twist. This gives an additional crossing
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Figure 4.5.10.

(2) Take two strands and pull one over the other. This gives two additional
crossings.

Figure 4.5.11.

(3) Take two strands that have a crossing, and a third that crosses the other
two below their crossing; move the third so that it crosses the other two
above their crossing.

Figure 4.5.12.

These produce equivalent knots, so we can use them to show that two knots
are the same. One can prove that all moves can be decomposed into combinations
of these three moves. So classification of knots is equivalent to classification of
projections of knots up to the Reidemeister moves.

Our main goal here is to show that the trefoil is not the same as the unknot. It
is not always easy to show that two knots are different. We will use the fundamental
group to show this.

First, let us give another description of what it means for two knots to not be
the same.

Definition 4.5.13. Given two knots K1,K2 ↪→ S3, we will say they are equiv-
alent if there is a homeomorphism ϕ : S3 → S3 with φ(K1) = φ(K2).

This is not the sharpest definition we can use, as we aren’t bothering to dis-
tinguish a knot from its mirror image. Of course, if we prove that the trefoil is not
equivalent to the unknot, then we can prove that the mirror image of the trefoil
is not equivalent to the unknot, and of course the unknot is equivalent to its own
mirror image.
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So how will we use the fundamental group? The idea is that we will distinguish
knots by distinguishing between their “complements”.

Definition 4.5.14. Given a knot K ↪→ S3, its complement is W = S3 \K.

Well, this is a complicated space! It’s not immediately obvious what this looks
like. But we can distinguish the W1 and W2 to distinguish K1 and K2, since
φ(K1) = K2 implies that φ1(W1) = φ1(W2).

Now let G1 = π1(S3 \ K1) (then we call G1 the group of the knot K1) and
G2 = π1(S3 \K2). Then if G1 6∼= G2 then K1 and K2 are inequivalent knots.

Well, this is turning a problem in geometry into a problem in algebra, and
this raises a lot of questions. We can ask, “are there different knots with the same
group?” and there are examples of that, but there are no examples of what are
called “prime knots” that have the same group even if they are different.

Many people tend to prefer to work with closed sets than with open sets, so
what we can do is “thicken” up the knot to a copy of S1 × D2, but then take
the closed complement of the knot as W = S3 \ Int(S1 × D2), which is of course
homotopy equivalent to W = S3 \ (S1 ×D2), so they have the same fundamental
group.

What we will end up showing is that the fundamental group of the unknot is
Z but the fundamental group of the trefoil is not abelian.

A basic fact is as follows: we can decompose S3 into two torii glued along their
common torus:

Proposition 4.5.15. S3 = S1 ×D2 ∪S1×S1 D2 × S1.

Proof. Take a copy of D2 and revolve it around a vertical axis to get a volume
D2 × S1.

Figure 4.5.16.

Next, take an infinite family of curves from the surface of the torus on one side
to the surface on the other side; rotating these around gives an infinite family of
disks D2, each of which intersects the axis at one point. However, since the two
ends of the vertical axis meet at ∞, it forms a loop S1, so we get S1 × D2; this
covers the entire space outside of our first torus D2 × S1. So the outside of the
torus is another torus. �

Remark 4.5.17. The order is important, as we can do S1×D2∪S1×S1S1×D2 =
S1 × (D2 ∪S1 D2) = S1 ×D2.
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Remark 4.5.18. D4 ≈ D2 × D2, so S3 = ∂D4 ≈ ∂(D2 × D2) ≈ (∂D2) ×
D2 ∪(∂D2)×(∂D2) D

2 × (∂D2) ≈ S1 ×D2 ∪S1×S1 D2 × S1.

To check, let us look at the fundamental group of S3, which we know to be 0.

Take π1(S3) = π1(S1×D2)∗π1(S1×S1)π1(D2×S1) = Z1∗Z×ZZ2 where Z×Z (0,1)→ Z1

and Z× Z (0,1)→ Z2, so we get {a, b | a = b = e} = 0. So our formula is consistent.
We can place the unknot in the middle of S1×D2, so its complement is D2×S1,

so the fundamental group is Z.
Now, there are a family of knots called the (p, q) torus knots: take a curve with

slope p/q with respect to some coordinate system and wrap it around the torus
until it meets back up with itself. We will show that the trefoil is equivalent to the
(2, 3) torus knot.

Formally, start with the construction of the torus taking I× I parametrized by
a, b so that (a, 0) ∼ (a, 1) and (0, b) ∼ (1, b). Then we can just start at (0, 0) and
draw the line with the slope p/q, jumping to the other side when we hit an edge.

a

b

a

b

Figure 4.5.19.

Now imagine the trefoil, or any generalization thereof with an odd number q
of crossings, and run a small tube through the crossings; at the ends, expand the
tube out and bring it down to meet so that it becomes a torus. Then the crossings
form a (2, q) torus knot.

Hence we can get S3\K(2,3) = (S1×D2\K(2,3))∪S1×S1\K(2,3)
(D2×S1\K(2,3)).

Well, π1(S1 × D2 \ K(2,3)) = π1(D2 × S1 \ K(2,3)) = Z, but since we have that

S1 × S1 \ K(2,3) ≈ S1 × (0, 1), π1(S1 × S1 \ K(2,3)) = Z as well. So we have

π1(S3 \K(2,3)) = Z ∗Z Z. The important part is to see how they are glued. Well,

S1 × S1 \ K(2,3) goes around a 2 times and around b 3 times, so that we get

π1(S3 \K(2,3)) = {x, y | x2 = y3}. In general, π1(S3 \K(p,q) = {x, y | xp = yq}.
We would like to show that Gp,q = {x, y | xp = yq} is not abelian. In fact, if we

take Gp,q and quotient by the commutators, we get Gp,q/[·, ·] = {x, y | px−qy} = Z.
It is a fundamental result that every knot group abelianizes to the integers.

Let us show the special case for G2,3.

Proposition 4.5.20. G2,3 is not abelian.

Proof. G2,3 = {x, y | x2 = y3} surjects onto D6
∼= S3, so we have the non-

abelian quotient S3, so G2,3 is not abelian. �

We will not develop this, but there is another way to distinguish knots using
an invariant called Alexander polynomials. In fact, it is faster to just throw away
a lot of the group structure, and it is easy to write computer routines to compute
Alexander polynomials.



42 4. COMPARING FUNDAMENTAL GROUPS OF SPACES

There is a wide array of working with knots and combinatorial group theory,
which we will not cover due to lack of time.

As a final example, to get the generators and relations for any knot: pick a
direction on the knot, and then split it into directed segments based on the crossings.
For example, on the trefoil, we would split it into three directed segments. Then
we get three segments, say x1, x2, x3. Now “knit” counterclockwise around each
segment. At a crossing we get the following:, say xi goes over xj and xk, splitting
them. Then looping under xi then xj , then back up under xi is the same as looping

under xk. So xixjx
−1
i = xk. These are called the “knitting relations at crossings”,

so the fundamental group is π1 = {x1, . . . | knitting relations}. This is nice and
pretty but difficult to actually compute, as the number of knitting relations is on
the order of pq for a (p, q) torus knot.

If we abelianize this group, we get xj = xk, so we just get Z.



CHAPTER 5

Covering Spaces

5.1. Covering Spaces

Intuitively, a covering space is like an unwrapping of a space. The effect is that
this reduces the “number of loops” as we unloop them – that is, π1.

Example 5.1.1. Take S1 and R. Then we can wrap R around S1 using the
mapping f(x) = e2πix. We can also imagine a bigger circle wrapped around a
smaller circle. Using complex notation, we would have gk(z) = zk, and this wraps
the big circle around the small circle k times.

Covering spaces are local homeomorphisms, but it’s more than that; it is not
sufficient for a local homeomorhpism to be a covering space. For example, consider
an open interval covering part of a circle; it is locally homeomorphic but not a
covering space.

Definition 5.1.2. A trivial covering of a set U a union of disjoint copies of U
mapping to U .

For example, given a small open subset of S1, and we look at the part of R
that maps to it, we get infinitely many small open subsets of R. So we see that
local sections of S1 are trivially covered. This motivates the following definition.

Definition 5.1.3. A covering space of X is a map f : Y → X such that every

part of X has an open subset U so that f−1(U)
f |U→ U is a trivial cover of U .

In other words, the basespace X can be covered by open subsets which are
“trivially covered”.

Example 5.1.4. For the basespace take the torus X = S1 × S1 and the space
Y = R2. Well, we can take the axes and wrap around the circles, using f(x, y) =
(e2πix, e2πiy). Geometrically, we could divide the plane into a lattice, then having
chosen a small subset of X, the “upstairs” will just be infinitely many copies of the
subset, each sitting inside one square of the plane. But globally, the “upstairs” is
a plane.

Exercise 5.1.5. Show that if Y1 → X1 and Y2 → X2 are covering maps, then
Y1 × Y2 → X1 ×X2 is a covering map.

Example 5.1.6. Take C ez→ C∗. Then given a vertical strip in C, then this maps

it to a circular strip in C∗. Well, if we take f−1(piece of C∗) f |U→ (piece of C∗).
Then, well, the inverse for this mapping, (f |U )−1, is the generalization of the
natural logarithm.

Definition 5.1.7. The degree of a cover f is the size of the inverse set f−1(p).

43
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Exercise 5.1.8. Show that this is independent of the choice of p.

Exercise 5.1.9. Take Z
g→ Y

h→ X, where g, h are covering maps. Show that
h ◦ g is a covering map and that deg(h ◦ g) = deg(h) deg(g).

Example 5.1.10. Recall the construction RPn = Sn/x ∼ (−x). Then Sn is a
covering of RPn using the 2-to-1 quotient map q of degree 2.

Example 5.1.11. The torus covers the Klein bottle as follows: take the torus
and map around the Klein bottle twice. This works since going through the flip
twice takes you back to where you started. This also gives the conclusion that R2

is a cover of the Klein bottle.

We will discuss this in a few minutes, but this is the unique simply connected
covering of the Klein bottle.

Example 5.1.12. Take a figure 8 and draw one of the loops horizontal and the
other vertical. Take the basepoint to be the vertex. Now, take a horizontal line and
wrap it around the horizontal loop, then there are infinitely many points at which it
hits the basepoint. This is not a covering map, but if we put a vertical loop at every
hitting point, then this gives a cover of infinite degree. But we could also have one
of these vertical loops unwind to become a vertical line, with horizontal loops at all
its hitting points, and so on and so forth. So we quickly obtain uncountably many
different covers of the figure 8. If we unwind all the loops we get something like a
televesion antenna. But we could also take a circle wrapping around the horizontal
loop twice, then at each hitting point add a vertical loop as an “ear”. Then this is
a covering of degree 2.

The lifting problem asks if what we see “upstairs” is the same as what we see

“downstairs”. Formally, it is as follows: Let Y,y
g→ X,x be a covering map with

g(y) = x and A,a
f→ X,x be a continuous map with f(a) = x.

Y,y

X,xA,a

g

f

f̂?

Figure 5.1.13.

The question is that can we find copies of images of f in Y ? We say f̂ a lift of

f if g ◦ f̂ = f , and lift+ if it preserves the basepoint. But say that the image of A
“touches itself” in such a way that in the “upstairs”, it is not touching itself but
touching its adjacent copies. Then there can be no lift since there is no “upstairs”
where the copy of the image “touches” itself. So when does a lift exist, and if it
does, is it unique?



5.1. COVERING SPACES 45

Theorem 5.1.14 (Lifting Theorem). A necessary and sufficient condition to
have a lift+ is that Im(f∗) ⊂ Im(g∗). Lift+s, when the exist, are unique.

Proof. Turn the lifting diagram into a diagram about their fundamental

groups, with π1(A, a)
f∗→ π1(X,x) with π1(Y, y)

g∗→ π1(X,x). Then if there is

a loop, we also have π1(A, a)
f̂∗→ π1(Y, y) with g∗ ◦ f̂∗ = f∗. This implies that

Im(f∗) ⊂ Im(g∗).
We omit the proof of sufficiency and uniqueness. �

Corollary 5.1.15. If A or X are simply connected, then there exists a lift+.

Corollary 5.1.16. Say we have Y
f→ X as a covering map. Then π1(Y )

f∗
↪→

π1(X).

Proof. If [α] ∈ Ker(f∗) : π1(Y ) → π1(X), then f ◦ α is a loop in Y which
extends to D2 → X. This lifts+. By uniqueness, it is filling in the same loop α. �

Definition 5.1.17. A cover Y → X is called a universal cover if π1(Y ) = 0.

Intuitively, this is what happens when you unwrap everything.

Example 5.1.18. R1 → S1, R2 → Torus, R2 → Klein, Sn → RPn, and the
full antenna, are all universal covers.

Let X,x be a path-connected space. Then there exists a mapping from covers to
subsets of the fundamental group {covers+ of X} → {subgroups of π1(x, x)} given
by (f : Y → X) 7→ (f∗(π1(Y, y)) ⊂ π1(X,x).

Theorem 5.1.19 (Classification of Covering Spaces). The map given above is a
1-to-1 and onto correspondence. That is, each unwrapping leaves a unique subgroup
of the fundamental group.

Example 5.1.20. We have π1(S) ∼= Z. Subgroups of Z are kZ, k = 0, 1, 2, . . ..
Well, R using the exponential map gives the covering space with fundamental group
0. Then, we have S1 using the gk mapping wrapping around k times. Well, the map
(gk)∗ : Z → Z is in fact multiplication by k, that is, the image of (gk)∗ = kZ ⊂ Z.
These are all the covering spaces of the circle up to homeomorphism, for we have
classified all the subgroups.

Definition 5.1.21. Given two covers Y1
g1→ X and Y2

g2→ X, a map of covers
h is a continuous function h : Y1 → Y2 with g2 ◦ h = g1.

Example 5.1.22. Take R covering S1 via e2πix and S1 covering S1 via g5(z) =
z5. Then h(x) = e2πi x5 .

Definition 5.1.23. An equivalence of covers h is a map of covering spaces
which is a homeomorphism.

So the question is, when is there a map of covers between covering spaces of
X?

Theorem 5.1.24. There exists a map+ of covers between two covering spaces
of X if and only if Im(g1)∗ ⊂ Im(g2)∗.

Proof. Take the lifting diagram and rotate it, then apply the lifting theorem.
�
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Corollary 5.1.25. Covering spaces+ are equivalent if and only if they corre-
spond to the same subgroup of π1(X).

So covering spaces are completely determined by subgroups of the fundamental
group.

The reason the figure 8 has so many covering spaces is because there are a lot
of subgroups of the free group on two generators.

5.2. Covering Translations

Given a covering map Y
f→ X, what are its symmetries? Well, there can’t be

too many. Let’s do an example.

Example 5.2.1. Start again with R f(x)=e2πix→ S1. We need a map h : R → R
that is compatible with f ◦ h = f . So h(x) = x+ k for k ∈ Z. The symmetries are
equal to translation by an integer.

Notice that the symmetries is just the fundamental group. In general, we will
get a reformulation of the fundamental group as symmetries. This gives an easy
way to compute the fundamental group.

Definition 5.2.2. h is a covering translation means h : Y → Y with f ◦h = f .

The set of all such h with fixed basepoint forms a group under composition,
denoted by C.

Example 5.2.3. Take g5 : S1 → S1. There are five symmetries: C(g5) = Z5.

Example 5.2.4. Take the cover of the figure 8 using the horizontal line with
loops at the hitting points. Then the symmetries is Z. Now unravel one of the
loops. Then anything else we do doesn’t matter; the group of symmetries is trivial.

So how many symmetries does a covering space have? Take f : Y,y → X,x,
then Φ : C(f)→ f−1(x) given by Φ(h) 7→ h(g).

Proposition 5.2.5. Φ is injective.

That is, a covering translation is completely determined by what it does to the
basepoint, for any basepoint.

Proof. Tilt the lifting diagram and apply the uniqueness of lifts. �

Corollary 5.2.6. |C(f)| 6 deg f .

Later we will talk about regular covers. They are nice covers – covers with a
lot of symmetry. For these, Φ is 1-to-1. They also correspond to normal subgroups
of π1(X).

For regular covers, it turns out that given a covering map f : Y → X, then
C(f) ∼= π1(X)/(f∗π1(Y )).

Corollary 5.2.7. For the universal cover Ỹ , C(f) ∼= π1(X).

The problem is that you don’t see the correspondence, which we will do next
time, but quickly: take a point x in X, then in the universal cover, the paths
between a choice of basepoints to all other points upstairs is an enumeration of all
the loops.
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5.3. Covering Spaces of Graphs and an Application to Algebra

In much of this course we have gone from Topology to Algebra to solve our
problems; now we will use Covering Spaces to solve a problem in Algebra. There
are algebraic proofs but the original proof was topological and the algebraic proofs
are mostly transcriptions of the topological proof into algebraic language.

Theorem 5.3.1. Every subgroup of a free group is itself a free group.

Remark 5.3.2. The number of generators of a subgroup is often larger than
for the original group.

We will in fact get a formula for the number.

Definition 5.3.3. A graph G = (V,E) is a set V of vertices and E a set of
(undirected) edges. More precisely, E maps to the set of unordered pairs of vertices
(note that we allow both elements of the pair to be the same, and having multiple
edges that have the same endpoints).

Definition 5.3.4. A geometric realization of a graph X(G) is the space formed
by (V ∪ (E× I))/{∼} where ∼ identifies for each edges e with endpoints v, w, e× 0
with v and e× 1 with w (or e× 0 with w and e× 1 with v).

Definition 5.3.5. A graph G is connected if there is a sequence of edges
between any two of its vertices.

It is easy to show the following:

Proposition 5.3.6. G is connected as a graph if and only if its geometric
realization X(G) is (path) connected as a space.

Definition 5.3.7. A graph is called a connected tree if it has no connected
series of different edges from any vertex to itself.

Example 5.3.8. A graph with a loop is not a tree.

Example 5.3.9. A square is not a tree.

Definition 5.3.10. A subgraph of G is a graph containing some of the vertices
and edges of G.

The following (which can easily be shown via induction) is a basic fact:

Proposition 5.3.11. Every connected graph contains a maximal connected tree
as a subgraph. This contains all the vertices in the original graph.

The maximal connected tree is usually not unique, and there exist formulas for
how many maximal trees there exist.

Corollary 5.3.12. Every connected graph is homotopy equivalent to a wedge
sum of circles (also called a bouquet of circles).

Proof. Since a tree is homotopy equivalent to a single point, shrink the max-
imal tree to a single point. �

Notice that for a connected tree |E| = |V | − 1. Thus for any connected graph
G the maximal connected tree has |V | − 1 edges. Hence X(G) ∼

h

∨
|E|−|V |+1 S

1.

This concludes homotopy of graphs. In higher dimensions for complexes, the
discussion is much more complicated.
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Now given a free group Fm, we can write Fm = π1(
∨
m S

1) by Van Kampen’s
Theorem. So we can now play around with free groups using a representation as a
graph.

Recall that for a space X, there is a 1-to-1 correspondence between connected
covers of X and subgroups of π1(X). Now given a subgroup H ⊂ Fm, there is a
corresponding covering space f : Y → X where X is the graph realization of Fm

such that π1(Y )
f∗→∼= Im(f∗) ⊂ π1(Y ) where Im(f∗) = H.

As an example, take F2 = F (a, b), and H = Ker(φ) where φ sends F2 7→ Z2 via
a 7→ generator and b 7→ e. H is a subgroup of index 2 in F2. Well, the index of a
subgroup is equal to the degree of the covering map. So drawing a and b as loops
from the same basepoint, we must go around a twice to cover it. Then at each of
the two hitting points, we need to make a copy of b. As a result, H is homotopy
equivalent to F3 = F (b, a2, aba−1).

So in general, given a space X =
∨
m S

1 and covering map Y
f→ X of degree

d so that π1(Y )
f∗→∼= Im(f∗) ⊂ π1(Y ), we have Y is again a connected graph. Well,

if d is the index of H in π1(Y ), then Y =
∨
|E|−|V |+1 S

1 =
∨
d(m−1)+1 S

1. So we

conclude that H is a free group on d(m− 1) + 1 generators.

Example 5.3.13. Let H be the set of words on 26 letters of even length.
In other words, H = F26/{words of even length} = Z2. In other words, H has
index 2 in F26. So H is free on 51 generators. Specifically the generators are
H = {a2, b2, . . . , z2, ab, ac, . . . , az}.

In the examples we have looked at, the subgroups have been normal. There
are interesting examples when the subgroup is not normal. The following is such
an example.

Example 5.3.14. Take F2
φ→ S3 = D2 given by {a, b | } 7→ {a, b | a2, b3, abab}.

Well, consider φ−1(Z2). Well, the index of Z2 in D6 is 3, so H = φ−1(Z2) also has
index 3. As a covering space, H looks like the following: the downstairs is two loops
a, b. Upstairs, a is just a loop with one basepoint. b is a loop with three basepoints.
Then since abab = e we have two a’s going between the other two basepoints of b.
So H = F4.

•

••

a

b

b

b

a

a

Figure 5.3.15.

This example is actually a counterexample that was used to show the incor-
rectness of a potential proof to the Poincaré conjecture.
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5.4. Regular Covering Spaces

Theorem 5.4.1. The following are equivalent for a path-connected covering
space Y → X

(1) π1(Y )C π1(X)
(2) For every loop in X, all of its lifts are loops or not loops.
(3) Φ is surjective (and thus a 1-to-1 correspondence).

Furthermore, all of these hold if we change the basepoint.

Proof. (3) =⇒ (1): Take y, y′ ∈ f−1(X). Then π1(Y, y′) = γ−1π1(Y, y)γ
where γ is a path y  y′. Applying f∗ we get f∗π1(Y, y′) = [f(γ)]−1π1(Y, y)[f(γ)].
So using different basepoints in Y over Y yields conjugate subgroups. Conversely,
every conjugate of f∗π1(Y, y) in π1(X,x) arises this way: For every [δ] in π1(X,x)

lift δ to path δ̂ in Y based at y and ending at a point y′. Then take γ = δ̂. Now,
Φ surjective means that Y,y is equivalent to a cover Y,y′ . So they correspond to
the same subgroup of π1(X). So these two conjugate subgroups are the same in
π1(X,x). That is f∗(π1(Y, y)) = all its conjugates, so it is normal.

(1) =⇒ (2): Say α is a loop in X. Saying α lifts to a loop at y is to say
that [α] ∈ Im(f∗(π1(Y, y))), and a similar story holds for α lifts to a loop at y′. If
f∗(π1(Y, y)) is normal they are the same so α lifts to a loop at one if and only if it
lifts to a loop at the other.

(2) =⇒ (3): We want to find a covering translation moving y to y′ ∈ f−1(x).
For that we need to see cover (Y, y) is the same as (Y, y′). So we need to check
some π1. But if [α] lifts to a loop in Y,y that is the same as saying it lifts to a loop
in Y,y′ . So they have the same fundamental group and thus are the same covers.

For the version with moving basepoint, see that (1) must still hold since
π1(X,x) = ω−1π1(X,x′)ω. So just apply the lifts of ω to π1(Y ). �

Definition 5.4.2. A cover is regular if it satisfies any of the above criteria.

Theorem 5.4.3. C(f) ∼= π1(X)/π1(Y ).

Proof. C(f)
Φ→

1−1
f−1(x) and π1(X)

lift a loop and take its endpoints→ f−1(x) is 1-1

as well. Need to check that they are compatible with composition. �

It’s not always easy to see what a fundamental group or a universal cover is.
For example, what exactly is the figure 8 union a disk to fill in aba2b3a−1b5?

Unsolved Problem: X is a 2-dimensional complex where X̃ is contractible.
Remove a disk to get X ′. Must X̃ ′ be contractible?

Example 5.4.4. For G = {x1, . . . , xn | R1, . . . , Rm}, X with π1(X) = G is
X =

∨
n S

1 ∪ (D2’s corresponding to R1, . . . , Rm)

Example 5.4.5. Take Z = {x | }, then filling it in with a circle twice is {x | x2}
so we get RP2.

5.5. Construction of Universal Cover (of a path-connected space)

The idea: First, we need to enumerate the points X̃. At first, we don’t mind
redundancy. Before we talked about lifting points from X into the covering space.

Well, let γ : I → X be a path from x to some other point z. Then let
y ∈ f−1(x), then there exists a lifting γ̂ from y to some z′ such that f ◦ γ̂ = γ. So
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we can enumerate points in X̃ as endpoints of paths and we will prescribe paths

in X̃ as lifts of paths in X starting at the basepoint x. This is hugely redundant
(since there are many points that go to the same point) but it’s a start. So we
will use equivalence relations to get rid of the redundancy, and then we have an
enumeration of all the points and we can give it a natural topology as being locally
homeomorphic to X. It will remain to check that this is a cover of X and that it
is simply connected.

This is not crucial, but for simplicity let us suppose that X,x is locally simply
connected. Take iU ⊂ X to be a simply connected open set, with basepoint
u ∈ iU . Now consider for each homotopy class of paths pick a path γ from x to u,
and for each point v ∈ iU pick a path δ from u to v.

•
x

•
uγ

•
vδ

iU

Figure 5.5.1.

Set Vγ = {γ · δ}, where γ is chosen and δ is variable (to each point in U). Well
there is still some redundancy, say if iU and jU overlap then iγ · iδ and jγ · jδ
might lead to the same point. Then we identify them if they are homotopic in X.

Then define X̃ = (
⋃
i∈I iVγ)/identification.

Proposition 5.5.2. X̃ is the universal cover of X.

We can map X̃ → X using the map f = endpoints of the path. Then iV
f |→ U

is a one-to-one correspondence (δ is determined by its endpoint in U as U is simply

connected). So give iV the same topology as U . It is easy to see that X̃ is a
covering space.

The hard part is showing that the space is simply connected.
Well we showed that the universal cover is characterized among the covers of

X by the property that a path β in X that forms a loop, with β 6= e in π1(X) has

its lift β̂ to X̃ satisfying β̂ is not a loop.
An equivalent formulation is that since β lifts to a loop in Y if and only if

[β] ∈ Im(π1(Y )
f∗→ π1(X)) where f∗ is injective and π1(X̃) = {e}, then β lifts to a

loop only if [β] = e in π1(X).

To this end, the lift β̂ is given as follows: β̂(t) = β|[0,t] (reparamaterized to go

from 0 to 1). We claim that if β is not trivial, that β̂ is not a loop in X̃. This is
achieved by getting away upstairs from the basepoint.
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Another way of saying this is by setting X̃ as {paths from X to any point of X}
quotiented by homotopy of paths with the same endpoints. Then set f to be tak-
ing the terminal point. Then if U is a simply connected open subset of X then
f−1(U) =

⋃
[γ]∈π1(X) γV .

5.6. Generalization to Other Covering Spaces

For H ⊂ π1(X) we want to construct a cover with π1 = H. More precisely, we

want Y
f→ X with f∗ : π1(Y )→ π1(X) injective such that f∗(π1(Y )) = H ⊂ π1(X).

The trivial case is when H = π1(X), and today we did the universal cover
H = {e}. There are two strategies to construct the rest. The first is to modify the
same construction, taking account of H. The second strategy is to write Y as a

quotient of X̃, specifically by some symmetries.

5.6.1. Modifying the previous construction. We set X̃ to be the set of
all paths from x in X quotiented by homotopy of paths with the same endpoints.

Well, we can just set y to be the set of all paths, except with the right quotient.
The question is what should be the equivalence relation to quotient by.

Well if we have two paths α, β from x to v that are homotopic we can say
[αβ−1] ∼

h
e. So the equivalence relation is the one relating for α, β paths with the

same endpoints, [αβ−1] ∈ H. Now the loops in X which lift to loops in Y will be
exactly those in H.

5.6.2. As a quotient of X̃. As an example, we see that we can obtain an

intermediate cover S1 gk→ S1. Well, we can write this out by sending R → S1 via
the map hk(x) = e2πix/k, then f = gk ◦ hk.

We showed that π1(X) acts on X̃ by covering translations. Then for H ⊂ π1(X)

we can form Y = X̃/H.
To this end we will review group actions.

Given a group G and a set X, a G-action on X is a map G×X mu→ X so that
gu = µ(g, u) satisfying (gh)(u) = g(h(u)) for g, h ∈ G, u ∈ X, and e(u) = u.

Example 5.6.1. G acts on G by left multiplication.

Example 5.6.2. Given G action on X and H ⊂ G, then H acts on X by
restricting the action.

Example 5.6.3. Given homomorphism H
ϕ→ G then if G acts on X then so

does H by the induced action h(u) = ϕ(h)(u) for h ∈ H,u ∈ X.

Remark 5.6.4. This is used to capture the notion of a symmetry of X. Equiv-

alently, G
Φ→ Perm(X) which acts on X.

A group action is called free if for every u ∈ X, gu = u =⇒ g = e.

If X is a topological space, then an action G × X µ→ X is called topological
if for each g ∈ G, the map µ(g, ·) : X → X is continuous. µ(g, ·) is then a
homeomorphism with inverse µ(g−1, ·). Alternatively, a group action on a set X is
equivalent to a homomorphism G → Perm(X), so a topological group action on a
space X is equivalent to homomorphism G→ Homeo(X).

So we are very interested in symmetry, and often symmetry unlocks what is
actually going on in the situation. This was one of Einstein’s big ideas, the role of
symmetry in physics.
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Example 5.6.5. Take G = Z2 × Z2 (called α and β) acting on S1, where α is
reflection across a vertical axis and β is reflection across the horizontal axis. This
action is fixed-point free, that is, there are no fixed points by the entire group.
However, this action is not free, since there are elements in the group that fix
elements.

Exercise 5.6.6. For G = Zp, p prime, show that fixed-point free is equivalent
to free.

There are always subgroups that have fixed-point free but not free actions.

Example 5.6.7. Take H to be a proper non-trivial subgroup of G, then look
at the cosets |G : H|, then G acts on this group by left-multiplication. Then this is
fixed-point free but not free.

So lots of things have free actions.

Example 5.6.8. Z2 acting on Sn by the antipodal map. Since there are no
fixed points, this is a free action. We can think of this as Z2 = {±1} under scalar
multiplication.

The space Sn/Z2 is RPn.

Example 5.6.9. Take Zm acting on S2k−1 = {v ∈ Ck | ‖v‖ = 1}. Then
Zm ∼= {e2πik/m | k = 0, . . . ,m − 1}, the m-th roots of unity. This operates on
S2k−1 using scalar multiplication.

S2k−1/Zm is the lens space L2k−1(m), where L2k−1(m) = RP2k−1.
An example which does not involve abelian groups involves the quaternion

numbers H = {a + bi + cj + dk | a, b, c, d ∈ R}. It is well-known that additively
H is the same as R4 and C2, but multiplication is given by i2 = j2 = k2 = −1,
ij = k, ji = −k. If z = a+bi+cj+dk then define the conjugate z = a−bi−cj−dk.
Then zz = a2 + b2 + c2 + d2. Then S3 = {z ∈ H | ‖z‖ = 1} is a (non-commutative)
group under multiplication as ‖z‖ = 1.

Example 5.6.10. S3 acts on Hk by scalar multiplication. Now we can restrict
attention to some finite groups in S3. In particular, consider {±1,±i,±j,±k},
sometimes called the quaternion 8-group Q8 ⊂ S3. Q8 acts on the unit sphere in
Hk, S4k−1. This is a free action, and we get an interesting space by looking at
the quotient, which is also sometimes called Q8, S4k−1/Q8. Well we have {e} ⊂
Z2 ⊂ Z4 ⊂ Q8, so geometrically, we can see a tower of covering spaces out of this,
S4k−1 → S4k−1/Z2 → S4k−1/Z4 → S4k−1/Q8, where each cover is a 2-fold cover
for a 8-fold cover overall. The intermediate steps are S4k−1/Z2 = RP4k−1 and
S4k−1/Z4 = L4k−1(4). The latter is in fact a 3-dimensional space, which is hard to
draw. This can be generalized further, to Q8×r by introducing more roots of unity.

Example 5.6.11. If X is a space, then π1(X) acts as covering translations from

X̃ → X̃. For example, for S̃1 = R, then using the covering map f(x) = e2πix then
the covering trnaslations are h(x) = x+ k, k ∈ Z. Then this group is Z = π1(S1).

Now we showed that the covering translations don’t have any fixed points, so

the action of π1(X) on X̃ is free. Then we can recover X = X̃/π1(X). For example,
Sn → RP2 = Sn/Z2 by the action Z2 = {e, antipodal map}.

One has to be careful, however, about a technical detail.
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Example 5.6.12. S1 acts freely on S1 but S1 → S1/S1 = {pt} is not a covering
map. We get a similar story for the action {e2πip/1}. The problem is that the points
are “piling up”. So to form a good quotient, we need avoid this “piling up”.

The condition for not “piling” up for free actions is as follows: a free topological
action is called totally discontinuous if each x ∈ X has an open neighborhood U such
that the sets {gU}g∈G are disjoint. It is easy to see then that covering translations
are totally discontinuous, and conversely, given an action of a group G on a space
which is free and totally discontinuous, then q : X → X/G is a covering space.

Observe that if G is finite then total discontinuity is automatic.
A consequence is that if G acts freely and totally discontinuously on a sim-

ply connected space X, then for the covering map X → X/G, X = X̃/G and
π1(X/G) = G.

Example 5.6.13. R/Z = S1, so π1(S1) = Z.

Example 5.6.14. Sn/Z2 = RPn so π1(RPn) = Z2.

Example 5.6.15. S2k−1/Zm = L2k−1(m) so π1(L2k−1) = Zm.

Example 5.6.16. π1(S4k−1/Q8) = Q8.

On an element level, g ∈ G corresponds to a loop given by the following: in X,
look at a path from x to gx, then take the image loop in X/G.

For G finite, there is a one to one correspondence {spaces with π1
∼= G} to

{simply connected spaces with free G action} via the maps Y → Ỹ and X/G← X.

Example 5.6.17. For a lens space,

S2k−1 → RP2k−1 → L2k−1(4)→ L2k−1(8)→ . . .

has no terminal object.

It is likely that the majority of spaces have no symmetry, but we do not have
a good way of defining that precisely, and besides, all of the spaces we think about
are very pretty and have good symmetry.

Let us return to constructing covers given X̃ for each H ⊂ π1(X). Well X̃

corresponds to H = {e}. We can construct XH = X̃/H, then we have the covering

map XH
g→ X̃ = X/G, with g∗(π1(XH)) = H.

Example 5.6.18. Let H = 2Z ⊂ Z, then using S̃1 = R, then R/2Z = S1, but
the covering map g2(R/2Z)→ R/Z = S1 has (g2)∗(Z) = 2Z = H ⊂ Z = G.

Example 5.6.19. Take S2k−1 → L2k−1(4), k > 1, then π1(L2k−1(4)) = Z4.
Then as an intermediate step we have S2k−1/Z2 = RP2k−1 where π1(RP2k−1) =
Z2 ⊂ Z4.

All of this is similar to Galois theory. For example, doing Galois theory on
C[x], then the Galois groups are exactly the covering translations if we have the
right picture.

5.7. Group Actions on Spaces

Definition 5.7.1. Given two spaces X,Y the join of X and Y is X ? Y =
X × Y × I/(X × Y × {0} ∼ X × {0}, X × Y × {1} ∼ Y × {1}.
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Obviously X ⊂ X ? Y .

Example 5.7.2. S0 ? S0 = S1. Similarly S0 ∗Sk = Sk+1. In general, S0 ?X =
ΣX. So in general inductively Si × Sj = Si+j+1.

Definition 5.7.3. A topological group is a set X equipped with the structures
of a topological space and a group such that these structures are compatible in that
µ : X ×X → X and the inverse g 7→ g−1 are continuous.

Example 5.7.4. G = Rn

Example 5.7.5. G = S1, the unit complex numbers under multiplication.

Example 5.7.6. If G,H are topological groups, so is G×H in the obvious way.
In particular we have the n-torus

∏
n S

1.

Exercise 5.7.7. Write down the group structure on R2 \ {0} ≈ S1 × R.

These play a big role in physics. The biggest example are matrix groups.

Example 5.7.8. The orthogonal, unitary, special orthogonal, special unitary
matrix groups On, Un, SOn, SUn. All of these are compact. A non-compact space

is GL(n,R) which is Rn2

.

When we study an action of a topological group G on a space X, we often want
this to be compatible with the topology of G. Before when we were given finite
G we did not impose a topology on G, but in general if G is a topological group
we want µ : G ×X → X to be continuous on the product space. In particular in
physics we want this for the previously mentioned matrix groups. In fact those are
called Lie Groups and have greater structure on top.

We can show that for every group G there is a space with fundamental group
G.

The following construction of a space with fundamental group G is due to
Milnor.

Example 5.7.9 (Milnor). Given a group G with space X with π1(X) = G,
without details, the idea is give G the discrete topology. Then take the infinite join
Y =

⋃
k∈ZFkG. We claim that Y is homotopy equivalent to a point; the idea is that

Y contains a cone at each stage. For example, taking G = Z2, then FnZ2 = Sn.
Then since Sn sits in Sn+1 as sort of the equator, then Y = S∞ =

⋃
k∈Z S

k is
contractible. In particular, π1(Y ) = {e}. Now use left multiplication by G on
all coordinates to get a free G-action. Now take the quotient X = Y/G, then
π1(X) = G.

Remark 5.7.10. This space is called an Eilenberg-Maclane space K(G, 1),
which is interesting because it has π1 = G and its universal cover is contractible.

For G = Z2, this yields RP∞ =
⋃
n∈Z RPn. For Zm we get the infinite Lens

space. In general it is difficult to see what we will get.
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CHAPTER 6

Differentiable Manifolds and Smooth Functions

6.1. Topological and Differentiable Manifolds

Definition 6.1.1. A topological manifold M of dimension n (sometimes written
Mn) is a Hausdorff space in which each point has a neighborhood homeomorphic
to Rn, or equivalently, an open disk in Rn, or equivalently an open subset in Rn.

This definition is equivalent to saying that the space is covered by copies of Rn,
open disks in Rn, or open subsets in Rn.

Example 6.1.2. For every point on a sphere Sn we can project its neighborhood
down to a plane on Rn:

q

Figure 6.1.3.

Example 6.1.4. The letter X is not a topological manifold, because it is 1-
dimensional but at the crossing it does not look like a line.

We need Hausdorff-ness to avoid the following situation:

Example 6.1.5. Take two lines and glue them together except at the point 0.
This is not Hausdorff since we cannot separate these two copies of 0. However, it
is locally Euclidean, but not Hausdorff!

In order to exclude this wretched space, we need the manifold to be Hausdorff.
We have a coordinate system imposed on every neighborhood around the point

from the homeomorphism into Rn.

ϕ

Figure 6.1.6.

57
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On the overlap, we have two coordinate systems. Each is continuous with
respect to the other.

For example, for neighborhoods U, V with coordinate map ϕ, ρ then ρ ◦ ϕ−1 is
continuous over ϕ(U ∩ V ).

U

V

ϕ

ρ

ρ ◦ ϕ−1

Figure 6.1.7.

In general topological manifolds are very hard to work with, so we prefer to
work with differentiable manifolds.

Definition 6.1.8. A differentiable or smooth manifold is a topological manifold
such that these functions ρ ◦ ϕ−1 are smooth over ϕ(U ∩ V ).

Note that this implies the same for the inverse ϕ ◦ ρ−1.
Smoothness of these functions is just in the Calculus sense, since we are map-

ping from Euclidean space to Euclidean space.
We can ask often if manifolds only have one unique differentiable structure.

Milnor showed that there were exotic differentiable structures on S7, and in fact,
there are 28. There is a formula for the number of differentiable structures on a
sphere, that involves the Bernoulli numbers.

Example 6.1.9. Take Sn ⊂ Rn+1, then we can divide it into hemispheres, a
northern hemisphere and southern hemisphere, which we can just project down to
the hyperplane across the equator. That is, for each i = 1, . . . , n+ 1 let

Ui+ = {v ∈ Sn | i− th coordinate is > 0}
and

Ui− = {v ∈ Sn | i− th coordinate is < 0}.
Then ϕi : (x1, . . . , xn+1) → (x1, . . . , xi−1, xi+1, . . . , xn+1. Note that this does not
cover the equator, but then we can cut another way to cover them. This uses
2(n+ 1) coordinate “patches”. The sphere can be done in two patches but requires
a more difficult coordinate system.

We need to show that the coordinate transforms are smooth. Well consider the
map ϕ2+ ◦ ϕ−1

1+ : (x2, . . . , xn+1) → (x1, x3, x4, . . . , xn+1) where the value of x1 is

x1 =
√

1− (x2
2 + x2

3 + . . .+ x2
n+1).

Now this example has been very expensive, as we used many coordinates.

Example 6.1.10. In RPn, Ui+ = Ui− so we use only (n+1) coordinate patches.

In practice we never show that a manifold is differentiable by checking coordi-
nate maps, as this is too difficult to do. Instead, we invoke theorems that tell us
that certain constructions give differentiable manifolds.
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But it is very useful to be able to switch between using coordinates and not
using coordinates.

A dumb example of a smooth manifold is the tautologous Rn:

Example 6.1.11. Rn ϕ=Id→ Rn.

A great deal of mathematics takes place in differentiable manifolds: geometry,
analysis, topology.

6.2. Smooth Functions

Once we have a smooth manifold, we can start talking about smooth functions
on a smooth manifold. Note that there is no circularity since our smooth manifolds
are defined using Advanced Calculus on Rn.

Note that in general we can have different requirements on transform between
coordinate systems, such as complex analytic.

Definition 6.2.1. We say f : Mn → R is smooth (or differentiable) (here
differentiable means infinitely differentiable, i.e. C∞) if it is smooth as a function
of each of the given coordinate systems of M . That is, f ◦ ϕ−1

α is smooth for a
coordinate map ϕα.

Note that on an overlap Uα∩Uβ this is independent of the choice of coordinates
ϕα or ϕβ , since these are differentiable with respect to each other. That is, we have

f ◦ ϕ−1
β = (f ◦ ϕ−1

α ) ◦ (ϕα ◦ ϕ−1
β ).

An example of a differentiable function that is greatly studied in mathematics,
especially in Morse theory is the following:

Example 6.2.2. The height function h : Sphere→ R or h : Torus→ R.

R

h

R

h

Figure 6.2.3.

Definition 6.2.4. F : M → Rk where F = (f1, . . . , fk) is said to be smooth
(or differentiable) if each fi is smooth.

More generally, we can discuss what it means for functions from one manifold
to another to be smooth:

Definition 6.2.5. f : Mm → Nn where Mm and Nn are differentiable mani-
folds, then f is differentiable if it is differentiable when written in terms of coordi-
nate patches of Mm and Nn. That is, for open Uα ⊂Mm with coordinate map ϕα
and open Vβ ⊂ Nn with coordinate map ρβ then f is differentiable if for x ∈ Uα,
f(x) ∈ Vβ , then near ϕα(x) the function ρβ ◦ f ◦ ϕ−1

α is differentiable.
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It is not always crucial to use infinite differentiability but it makes it nice.
Given twice differentiability, in fact by adjusting the coordinates we can obtain
infinite differentiability.

It is easy to see that composites of smooth functions are smooth. This follows
from Advanced Calculus.

6.3. Equivalence of Differentiable Manifolds

In Mathematics we always want to know if things are the same.

Definition 6.3.1. A function f : Mm → Nn is said to be a diffeomorphism if
f is a homeomorphism with f and f−1 differentiable.

We need to show that f−1 is differentiable, because it is possible to have a
differentiable function whose inverse is not differentiable:

Example 6.3.2. The function R f→ R given by f(x) = x3 is obviously a home-
omorphism and differentiable but f−1 = x1/3 which is not differentiable at x = 0.

In this case there is in fact a diffeomorphism, namely the identity map, but
f(x) = x3 does not cut it.

6.4. Excursion: Basic Facts from Analysis

Proposition 6.4.1. On Rn there is a smooth function f : Rn → R satisfying
f(v) = 1 if ‖v‖ < 1

2 , 0 6 f 6 1 if 1
2 6 ‖v‖ 6 1, and f(v) = 0 if ‖v‖ > 1.

Note that this is not true in complex differentiable functions!

Proof. We first show the case n = 1. This implies the case for n > 1, since if
we have f : R→ R satisfying this property then we can just use F (v) = f(‖v‖).

We start with a function g such that g = 0 on R− and then rises. So say

g(x) =

{
e−1/x2

x > 0

0 x 6 0
.

Figure 6.4.2.

Now take the product of this with a shifted mirror image, then we get a sort
of smooth bump:

 

Figure 6.4.3.

Then if we integrate, we get a picture that plateaus after a while; then we
multiply the integral by a shifted mirror image to get a mesa. �
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Another basic facts are the Inverse Function Theorem, and equivalently the
Implicit Function Theorems.

Theorem 6.4.4 (Inverse Function Theorem). Suppose we had a function f
defined on some neighborhood of 0 in Rn, mapping into some other neighborhood
of 0 in Rn with f(0) = 0. The derivative Df is a n× n Jacobian matrix. If Df is
nonsingular at the origin then f has a smooth inverse in a neighborhood of 0.

In single-variable calculus we can do this on the entire real line, but in greater
dimensions we cannot.

Example 6.4.5. Take f : C→ C by f(z) = ez. This hits the same point many
times as we go around.

However we can talk about how big the open set is, but that is technical and
not actually needed.

The idea for the proof is that f(v) is approximated by (Df(0))(v) locally, and
this is invertible.

Theorem 6.4.6 (Implicit Function Theorem). Suppose we had a function G
from (X = {neighborhood of 0 in Rk}) × (Y = {neighborhood of 0 in R`}) to
{neighborhood of 0 in R`} with G(0, 0) = 0. Given that

(
∂G
∂Y

)
`×` (0, 0) is non-

singular, then there exists a smooth function f : X → {neighborhood of 0 in R`} so
that G(x, f(x)) = 0. That is, G(X,Y ) = 0 defines Y as a smooth function of X.

So even if it is difficult to write down the description of Y in terms of X this
tells you that if we have such a G then there exists such a description.

Proposition 6.4.7. The Inverse Function Theorem implies the Implicit Func-
tion Theorem.

Proof. Consider the function H = (X,G(X,Y )),{
neighborhood of 0 in Rk+`

} H→
{

neighborhood of 0 in Rk+`
}
.

Then H is nonsingular at (0, 0) since DH =

(
I ∗
0 ∂G

∂Y

)
. There is an inverse function

K, then write K(X, 0) = (X, f(X)). This yields f(x) with G(x, f(x)) = 0. �

There is another theorem, Sard’s Theorem, which we will save for later.





CHAPTER 7

Tangent Spaces and Vector Bundles

7.1. Tangent Spaces

Our next topic is the tangent space TxM , also written (TM)x, of a manifold
M at a point x ∈M .

There are at least three ways of formulating the tangent space:

(1) Think ofM ⊂ RN , then take the vectors tangent to x, using Advanced Calculus.
The problem with this is that it requires us to put our manifolds in Euclidian
Space.

(2) Use parametrized (smooth) curves through x. This is difficult because curves
do not come with an arithmetic on them, though we can construct one.

(3) Tangent lines used in Advanced Calculus to differentiate along, ∂f
∂~v . The idea

is to define tangent vectors as “rules of differentiation”. Putting them together
will give the tangent space.

We will use the third approach.

Definition 7.1.1. A rule of differentiation at a point p ∈Mn is a map

χ : {smooth functions defined near p} → R

satisfying linearity:

χ(af + bg) = aχ(f) + bχ(g), a, b ∈ R

and the Liebnitz condition:

χ(f ◦ g) = f(p)χ(g) + χ(f)g(p).

In Advanced Calculus we have the following:

Example 7.1.2. χ = ∂
∂~v .

Proposition 7.1.3. The set (TM)p = {χ | χ is a differential rule near p} is
an n-dimensional real vector space.

Proof. Obviously for rules χ1, χ2, aχ1 + bχ2 satisfy linearity and Liebnitz.
Now pick coordinates ϕ(·) = (x1, . . . , xn).

We will show that
{∑

ai
∂
∂xi

}
p
∈ (TM)p. There are two claims:

(1) ∂
∂x1

, . . . , ∂
∂xn

are linearly independent in (TM)p, and

(2) they form a basis for (TM)p.

For (1) just check them on the coordinate functions x1, . . . , xn.
For (2) we will show that any χ is given by

∑n
i=1 ai

∂
∂xi

, where ai = χ(xi).
Given f a smooth real-valued function defined near p, by Taylor’s Theorem f can
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be written as

f = c+

n∑
i=1

cixi +
∑

xixjgij(x1, . . . , xn).

Then
χ(f) =���χ(c) +

∑
ciχ(xi) +

∑
(functions that are 0 at p = 0)

so

χ(f) =
∑

ciχ(xi) =
∑ ∂f

∂xi
χ(xi). �

Let us see how we use these to talk about differentiability at a point.
So given f : Mm → Nn we want to make sense of (Df)p:

(1) Using coordinates (x1, . . . , xm) at p and (y1, . . . , yn) at f(p) we can write f
as being f = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)) we then set (Df)p equal

to the matrix (( ∂fi∂xj
)) for i = 1, . . . , n and j = 1, . . . ,m. This is the usual

Jacobian matrix in the Advanced Calculus sense. This is nice because it is
easily computable, but the disadvantage is that it requires picking coordinates
in both M and N .

(2) Intrinsically, without reference to coordinates in M or N , the idea is that a
matrix just records a linear map when given a basis in the source and the
target. Now we just record Df as a linear map, which, when we introduce
coordinates x1, . . . , xm inM and y1, . . . , yn inN , will give us bases ∂

∂x1
, . . . , ∂

∂xm

and ∂
∂y1

, . . . , ∂
∂yn

in terms of which Df is seen as a matrix, the Jacobian matrix.

So we have p ∈ M and f(p) ∈ N , then we have (TM)p and (TN)f(p),
which we defined intrinsically. Then (Df)p : (TM)p → (TN)f(p) is a linear
map defined using the chain rule. We need to describe ((Df)(χ))(g) where g
is a real-valued function smooth function near f(p). So we define

((Df)(χ))(g) = χ(g ◦ f).

It is easy to check that this satisfies linearity and Liebnitz, so that we get
(Df)(χ) ∈ (TN)f(p).

The last thing to do is to check that if we give ourselves a basis ∂
∂x1

, . . . , ∂
∂xm

for (TM)p and ∂
∂y1

, . . . , ∂
∂yn

for (TN)f(p) then the linear map Df with respect

to these bases is given by the usual Jacobian matrix.
This is shown by the chain rule.

To discuss Df at more than a point we need to introduce a family of vector
spaces TM , the whole tangent space of an m-dimensional manifold M . The idea is
that there are no good natural way to compare tangent spaces at different points.
We need to pick coordinates, but it depends on the choice of coordinates.

So what we will do is form the union of all the tangent spaces
⋃
p∈M (TM)p

and give it a topology as a smooth manifold of dimension 2m: m dimensions for
where it is rooted and m dimensions for the direction.

This is not just a manifold, since it has extra structure, since we can add some
of these vectors. So if we use coordinates x1, . . . , xm near p ∈ M , for TM use
coordinates (x1, . . . , xm, a1, . . . , am) where ai corresponds to

∑
ai

∂
∂xj

at the point

(x1, . . . , xm).
So for each point p we get a corresponding neighborhood U ×Rm in TM . If we

take an overlapping set V ×Rm on the overlap in the underlying manifold there is a
change of coordinates given by (y1, . . . , ym) = (f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)).
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In TM the change of coordinates is given by (f1, . . . , fm, (Df)m×m( ∂
∂x1

, . . . , ∂
∂xm

)),
so we see that this is not a general crossing with Rm; there is additional structure.
In Euclidean space this is not the case since we can just take a single vector space
based around the origin.

Of course, we can map TM down to M using a natural projection π sending
(x1, . . . , xm, a1, . . . , am) to (x1, . . . , xm) that just forgets the vector spaces.

Notice that here for each p ∈M , the inverse image π−1(p) is an m-dimensional
vector space.

Example 7.1.4. In the case of the circle S1, we can introduce a coordinate
of the angle θ. Notice that this is not well-defined, as it is not globally defined,
only on pieces of the circle. So we have to be careful. As the angle is increasing,
we have a a vector ∂

∂θ . But even though θ is not well-defined, ∂
∂θ is. So in fact

TS1 = S1 × R, parametrized by (θ, a) where χ = a ∂
∂θ at point θ.

Remark 7.1.5. In general, the tangent space of the sphere is not equal to the
sphere times Rn, except for a few special values: n = 1, 3, 7.

7.2. Vector Bundles

This is a key notion that plays a role in many parts of Mathematics.
Before we define it, we already have an example:

Example 7.2.1. If we have X = Mm, then (TM)
π→M is a vector bundle.

Example 7.2.2. For any topological space X, take the obvious projection X×
Rm π→ X. This is called the trivial m-dimensional vector bundle.

The fact that the projection (TS2)
π→ S2 is not trivial is of great importance

in ODEs.

Definition 7.2.3. A vector bundle over a space X is (X,E, π) where X is the
base space, E is the total space, π : E → X is a projection map, and π−1(p) is
an m-dimensional (real) vector space. Now we want these vector spaces to vary
continuously for p ∈ X, so we also require local triviality: X can be covered by
open sets U such that π−1(U) = U × Rn in that π−1(p) ∼= p× Rn.

The last condition is to exclude the following:

Example 7.2.4. Sitting over R is a family of vertical lines, then after a certain
point they become horizontal lines:

R
Figure 7.2.5.

So the projection is not continuous.

There is a great deal of study done on invariants on non-trivial vector bundles.

Example 7.2.6. Take an open Mobius strip and project it down to the circle
sitting along the middle of the strip. Written in detail, take S1 = I/0∼1, and
E = I × R/(0, v)∼(1,−v). This is a non-trivial 1-dimensional vector bundle.
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1-dimensional vector bundles are also called line bundles. The only way a line
bundle can be non-trivial is that they have Mobius strips built into it.

We will often write Ep = π−1(p). These are the fibers, so a vector bundle is
a kind of fiber bundle. In general fiber bundles we do not assume a vector space
structure.

There is an arithmetic of vector bundles, since many of the things we do for
vector spaces can be done for vector bundles, just using reparametrization.

Example 7.2.7. In vector spaces we have the direct sum V ⊕W , then if E
and F are vector bundles over X then E ⊕ F is a vector bundle over X where
(E ⊕ F )p = Ep ⊕ Fp.

Let εk be the trivial k-dimensional vector bundle over X, εk = (X,X ×Rk, π).

Example 7.2.8. TSn ⊕ ε1 = εn+1.

A manifold with this property is called stably parallelizable. These manifolds
are important but rare.

Example 7.2.9. For M = S1 × · · · × S1 the m-torus, then TM = M ×Rn has
bases at each point ∂

∂θ1
, . . . , ∂

∂θm
.

Notice that linear algebra is written into this everywhere.

Example 7.2.10. If X is a point then any vector bundle over X is a vector
space.

In general we can think of this as parametrized vector spaces.
If A ⊂ X and E is a vector bundle over X, we can form E|A = (π(A), A, πA).

Example 7.2.11. Take Sn ⊂ Rn+1. The trivial bundle of this is the one
where we take the radial vector pointing outwards. So ε1 is the space of radial
(normal) vectors on the sphere. Then TSn ⊕ ε1 = TRn+1|Sn . But then since
TRk = εk × εk = Rk × Rk, T (Rn+1)|Sn = εn+1.

This works as long as we embed Mn in one dimension higher Rn+1 since we
can use the outward pointing vector; in two dimensions higher we can’t do this.

7.3. Derivatives over Manifolds

The nice thing about vector bundles is that it gives us a language for talking
about derivatives over manifolds.

So given a map f : X → Y of spaces, with E a vector bundle over X and F
a vector bundle over Y , a map of vector bundles (over f) is a map G : E → F
compatible with the projections πE and πF in that the following diagram commutes:

E F

X Y

G

πE πF

f

Figure 7.3.1.



7.3. DERIVATIVES OVER MANIFOLDS 67

and G is linear on each fiber. That is, πF ◦G = f ◦ πE , and Ep
G|→ Ff(p) is a linear

map.
The main example is the derivative of a function f over manifolds: If f is a

smooth manifold f : Mm → Nn then we have Df : TM → TN , where Df at any
point p is just (Df)p. In coordinates, this is the usual Jacobian matrix.

Definition 7.3.2. Given a smooth function f : Mm → Nn we will say that
p ∈M is a critical point for f if Rank(Df)p < n.

Remark 7.3.3. If m = n then this is the same as saying that for Df as a
matrix that det(Df) = 0. For general m we can reinterpret this as the determinant
of minors of Df .

Definition 7.3.4. The points of the form f(critical point) ∈ N are called the
critical values.

Definition 7.3.5. The regular values are N \ {critical values}.
A warning: this includes the points not in Im(f). Furthermore if m < n,

Im(f) = are critical values, so the regular values are N \ Im(f).
We will see for f where m > n that almost all points are regular values, and

the behavior there is very nice, in that f−1(p) is a manifold of dimension m− n.

Example 7.3.6. For the height function Sn
h→ R1 then the critical values are

the north and south pole. Everywhere else the inverse image is Sn−1.

R

h

×

×

×

×

Figure 7.3.7.

Example 7.3.8. For the height function from the vertically-aligned torus to R
there are four critical values.

R

h

×

×

×

×

×

×

×

×

Figure 7.3.9.

The inverse image varies, for at certain points the inverse image is one circle;
at other points the inverse image is two circles. At the critical points we have bad
behavior: we have points and figure 8s.
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Example 7.3.10. For Rn f→ 0 ∈ Rn, the critical points are Rn but the critical
values are just {0} and the regular values are Rn \ {0}.

We will need two theorems from Analysis. The first we will not prove, but a
good reference for this is Sternberg’s book.

Theorem 7.3.11 (Sard). Given open U ⊂ Rm, V ⊂ Rn and smooth U
f→ V

then the set of critical values has measure 0.

For compact manifolds, and f : M → N , it is easy to see that the critical values
is a closed, measure 0 set, so the regular values is an open dense set.

For U a neighborhood of 0 in Rm, and V a neighborhood of 0 in Rn, then for
f : U → V and f(0) = 0. Assume (Df)0 has rank n. We want to see that f−1(0)
near 0 is a submanifold of dimension m− n.

Well if we have coordinates (x1, . . . , xm) in the source and (y1, . . . , yn) in the
target, then for the matrix Df without loss of generality suppose the first n×n block
G is non-singular. Consider the new source coordinates (y1, . . . , yn, xn+1, . . . , xm).
Then

∂

∂(x1, . . . , xm)
=

(
DG ∗

0 Idm−n

)
is non-singular. So using these coordinates, f is locally given by projection to the
first n coordinates, and f−1(0) is locally just 0× Rm−n.

Example 7.3.12. Let f : Rn → R be defined by f(x1, . . . , xn) =
∑
x2
i . Then

Df = (2x1, 2x2, . . . , 2xn) which is nonzero except at (0, . . . , 0). Hence it has maxi-
mum rank, and the only critical point is (0, . . . , 0) with critical value f(0, . . . , 0) = 0.
So f−1(1) is a manifold of dimension (n− 1) and is exactly the sphere Sn−1.

This gives us a cheap way to see that Sn−1 is a manifold, without the use of
coordinate maps. Very few manifolds come with coordinate maps.

Note that f−1(0) = {0}, which is not a manifold, so the inverse behaves badly
on critical values.

7.4. Manifolds with Boundary

An example of a manifold bounded by a sphere is Dn with boundary Sn−1.
Another example is a torus with a portion sliced off.

This is similar to the idea of a closed set.
We have the notion of interior points, coordinatized as before. But points on

the boundary are coordinatized corresponding to the edge (x1, . . . , xn) ∈ Rn with
xn > 0, that is to a point with xn = 0.

Here we call a function f : A → Rk for A ⊂ Rn smooth if it is the restriction
of a smooth function on some open neighborhood of A.

The points on the boundary ∂M of M are coordinatized by Rn−1, so form a
manifold of dimension (n− 1).

The way we have set this up, the boundary itself has no boundary points. Note
that ∂(∂M) = ∅.

M is called a closed manifold if it is compact and has no boundary, that is
∂M = ∅.

We saw before that for a function f : Rn → Rm then p is a regular value means
that f−1(p) is a manifold of dimension (n− 1). Then f−1(p) = δ(f−1(−∞, p)) is a
manifold with boundary of dimension n.
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There is an interesting question of which manifolds are boundaries: given a
manifold, is it a boundary of a manifold?

For example, a point is not the boundary of a compact manifold, by elementary
arguments.

In 2 dimensions, anything orientable is a boundary, since we can fill it in. It
turns out that RP2 is not a boundary.

In higher dimensions there is a huge subject studying this known as Bordism
and Cobordism Theory.





CHAPTER 8

Degree of Maps

8.1. Degree of Maps (modulo 2)

Now suppose we have smooth Mn f→ Nn over compact spaces of the same
dimension, with N connected. Let p be a regular value of f . Then f−1(p) is a
compact 0-dimensional manifold, that is “finitely many points”.

Definition 8.1.1. degp(f) = |f−1(p)| (mod 2).

The goals are to show that

(1) The degree mod 2 is independent of the choice of the regular value p, so
which justifies defining deg(f) = degp(f) (mod 2).

(2) If f ∼
h
g then degp(f) = degp(g).

For a manifold with boundary Wn+1 with Mn = ∂W we have TW defined as
before using ∂

∂x1
, . . . , ∂

∂xn
as a basis. Notice that if we restrict to vectors on the

boundary, TW |∂W=M is a vector bundle of dimension (n+ 1) on M , whereas TM
is a vector bundle of dimension n. Now TW |∂W = TM ⊕ R, either an outward
pointing vector or an inward pointing vector. The usual convention in mathematics
is to use an outward pointing vector.

A vector χ = ∂
∂xn+1

is outward pointing if it has the property that there is a

function f defined near the boundary point with f 6 0 but χ(f) > 0.

Example 8.1.2. The tangent space of the unit interval I is TI = I × R, and
T1 = (1)× 0.

We now prove that homotopic maps have the same degree. This is proved by
a very simple elementary picture.

Suppose we have a cylinder M ×I, and f : M ×0→ N and g : M ×1→ N and
homotopy between them H, where N has the same dimension as M . This picture
has dimension (n+ 1).

M × 0

M × 1

M × I
N

g

f

H

Figure 8.1.3.
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So f = H|M×0 and g = H|M×1.
Now say f, g,H are smooth, and p a regular value of f, g,H. Now f−1(p) and

g−1(p) are each a set of points, but what is H−1(p)? It is a manifold with boundary
of dimension (n+ 1)− n = 1. Well ∂H−1(p) = f−1(p) ∪ g−1(p).

Now the only 1-dimensinal smooth compact manifolds are copies of I or S1.
So we can have lines hanging off the bottom, lines hanving off the top, lines from
the top to the bottom, or circles floating in the middle.

M × 0

M × 1

M × I •p

N

g

f

H

•

•

•

•
• •

••

Figure 8.1.4.

Now we conclude that the boundary of a 1-manifold is an even number of
points, so that |f−1(p)| = |g−1(p)| (mod 2).

Now we did not really use the homotopy H. So more generally, suppose we
are given smooth f : Mn → Nn closed smooth manifolds, with M = ∂Wn+1, and
smooth F : W → N such that F |M = f . Suppose p is a regular value of f, F . Then
degp(f) = 0 (mod 2).

Looking at F−1(p) we have either circles in the middle or arcs hanging off of
the boundary. So the number of points on the boundary ∂F−1(p) = f−1(p) is even,
since the boundary of a 1-dimensional manifold is even.

This includes the case that W = M × I, where ∂W = M × 1 ∪M × 0. Then
in the case of the cylinder we have deg f + deg g = 0 (mod 2) so they are equal
modulo 2.

To prove this we needed some strong restrictions. So now we will weaken them.
We assumed that p is a regular value of f on ∂W . We want to justify the

assumption that p is a regular value of F on W . We cannot just say to ignore it as
we used it in the picture. So we need something clever:

Observe that at a regular value p with f smooth, we can find a neighborhood
nearby with coordinates such that any q near p will also be a regular value with
degp(f) = degp(q). So degree is locally constant.

Suppose p is a regular value for f , we can find nearby a point g for which g is a
regular value of f and for F . Now degp(f) = degq(f) = 0 (mod 2) so we can take
a point on the boundary and replace it with a point on the interior.

Before we prove that the degree is independent of the choice of p, we need to
discuss uniformity of manifolds.

Intuitively, it means that any point is just as good as any other point.

Proposition 8.1.5. Let Mn be a connected manifold, and p, q ∈M . There is
a diffeomorphism Φ : M →M with Φ(p) = q.

In the complex world the analog is false: it is not true that on a Riemann surface
that we can have a complex diffeomorphism that throws one point to another point.
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Proof. Take Dn and ρ : Dn → Dn so that ρ(0, . . . , 0) = (t1, 0, . . . , 0) but we
want ρ = Id outside a disk of radius 1

2 . So it will be a push to the right that is
dampened as we go out. This is a standard thing to do in ODEs as a flow over
vector fields. This tells us that we can move a point to a nearby point.

Define an equivalence relation among points of M by p ∼ q if there is such a
Φ. Now we can do this on a little disk, so this works.

Notice that the set of points equivalent to p is an open set. So M is decomposed
into disjoint open sets, one of which is all of M since M is connected. �

This proof fails in the complex analytic world because ρ would need to be
identity everywhere.

We actually need a slight strengthening: We want Φ to be smoothly homotopic
to the identity. But this is okay because on the disks we can just flow from time
t = 0 to time t = 1.

So now to show that the degree is independent of p instead of varying the point
we vary the function.

Now using uniformity of N , there is a diffeomorphism Φ : N → N sending
Φ(q) = p, with Φ smoothly homotopic to IdN .

Consider the function g = Φ◦f . Notice that f, g are smoothly homotopic since
Φ is smoothly homotopic to the identity. Now p is a regular value of g by the chain
rule, and from what we already proved we know that degp(g) = degp(f). Well

g−1(p) = (Φ ◦ f)−1(p) = f−1(Φ−1(p)) = f−1(g). So degp(g) = degq(f), so that
degp(f) = degq(f) (mod 2).

Now one difficulty is that this was only for smooth maps and smooth homo-
topies. Another difficulty is that we only did this modulo 2. To get an integer we
need to introduce signs and orientations.

But let us talk a little bit about how to drop the smoothness assumption.
One can show in general that for M,N smooth manifolds, any map f : M → N

is homotopic to a smooth map. A similar result can be shown for homotopies of
smooth maps.

The idea is that we approximate by a smooth function and then maps that
approximates each other are homotopic.

Let us see how to do this for the sphere.

Proposition 8.1.6. Given a function f : Sn → Sm

(1) f can be approximated by a smooth function
(2) functions which approximate each other are homotopic.

So any map is homotopic to a smooth map.

We use the Stone-Weierstrass Theorem.

Theorem 8.1.7 (Stone-Weierstrass). A function f : Dn → R can be approxi-
mated by a polynomial.

So if we have a function g : Sn → Sm, we can extend radially to get a function
G : Dn+1 → Dm+1. Then we can approximate each coordinate by polynomials.

So we have a function Sn ↪→ Dn+1 polynomial→ Dm+1, then look at the composi-

tion Sn
L→ Dm+1, and the smooth function K(v) = L(v)

‖L(v)‖ ∈ S
m, which is still an

approximation.
Now see that if f, g : Sn → Sm ⊂ Rm+1 and f and g are close, then we can

linearly interpolate between them, that is, look at H(v, t) = tf(v) + (1 − t)g(v).
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Now we can make the complaint that this falls off of the sphere, so again we can

divide by the norm to get H(v, t) = tf(v)+(1−t)g(v)
‖tf(v)+(1−t)g(v)‖ .

We can make the same argument for homotopies.
So the swindle is that we can define for any continuous f : Sn → Sn the degree

deg(f) by replacing f with a homotopic smooth map for which we have already
defined the degree. We know that this is well-defined from everything we have said.

So the degree is defined for continuous map, but we can only compute it for
smooth maps.

Notice the following:

Proposition 8.1.8. For deg(f) 6= 0, then f is surjective.

Proof. Suppose f : Sn → Sn is not surjective, then it is missing a point, so
we have f : Sn → Sn \ {p} = Rn ∼

h
{point}, so f ∼

h
constant which has degree

0. �

Example 8.1.9. The degree of S1 f→ S1, f(z) = zk is deg(f) = k (mod 2).
Next time we will show that it is k as an integer.

Example 8.1.10. Take S2 = C ∪ {∞}, and f(z) = zk and f(∞) = ∞ then
deg(f) = k. The regular values are S2 \ {0,∞}.

Example 8.1.11. For Sm
f→ Sm, deg(f) = k we can get Sm+1 F→ Sm+1 with

deg(F ) = k by taking the suspension of the map and taking f at every level. So
for spheres we have maps of any degree we want.

8.2. Orientation

We will first define orientation for vector spaces, then we will talk about vector
bundles and then manifolds.

8.2.1. Orientation on Vector Spaces. First let us do it very carefully in
the setting of vector spaces. Let V be a finite-dimensional vector space over R. We
will define what we mean by an orientation over a vector space first. There are a
few ways to do it.

One simple way to do it is follows: An orientation of V is an equivalence class
of ordered bases of V . So given bases E = (e1, . . . , en) and F = (f1, . . . , fn) for
V , we say E ∼ F if the matrix of change of basis has positive determinant. Thus
for dimV > 0, there are two equivalence classes of orientations of V . This can be
justified by doing a lot of geometry.

Remark 8.2.1. The set of bases of V is in a one-to-one correspondence with
GL(n,R), which has sitting in it the orthogonal matrices On. Well the determinant
takes GL(n,R) to R×, and On to {±1} ⊂ R×. Notice that both On and GL(n,R)
both have two components.

So bases of the same orientation class can be varied to each other through bases
in that orientation class.

If A,B are oriented, finite dimensional vector spaces, then so is A⊕B. We do
the obvious thing, take the basis for A and add the basis for B and check that that
is well-defined. A warning: the orientation for A⊕B may not be the same as that
of B ⊕A.
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Exercise 8.2.2. What is the relation?

Given oriented vector spaces E,F , a linear isomorphism A : E → F is said to
be orientation-preserving (or reversing) depending on the sign of the determinant
of A. We write

ε(A) =

{
+1 detA > 0

−1 detA < 0

with respect to given orientations of E,F .

Example 8.2.3. R1 has two orientations. The usual orientation is given by the
basis {1}.

Usually we pick the usual orientation to be pointing to the right.
Notice that an orientation of a vector space V determines one for V ⊕ R1.

So if we get an orientation for V and pick the usual orientation for R1 we get an
orientation for V ⊕ R1. If we keep repeating this we get similarly V ⊕ Rn.

There is a one-to-one map between orientations for V and orientations for
V ⊕ R1, for V 6= {0}. {0} has only one orientation, namely, the one with no basis.
This is not good because we want to uniformize.

Some motivation, jumping ahead, is the Fundamental Theorem of Calculus,

which says that
∫ 1

0
df = f(1) − f(0). Basically, we want to be able to give points

orientation.

Definition 8.2.4. A stable orientation of V is orientation for V ⊕ R1, or an
orientation for V ⊕ Rn.

A stable orientation is equivalent to an orientation when V 6= {0}. But every
finite dimensional vector space over R has two stable orientations.

Given v sparse in A,B,C with A ⊂ B+C where C = B
A , then (stable) orienta-

tions for any any two of thse determines an orientation for the third. We can show
that B ∼= A⊕ C.

Complex vector spaces come with natural orientation, unlike real vector spaces.
If W is a finite dimensional complex vector space, regarding it as a real vector space
, it has a natural orientation. W has a complex basis e1, . . . , en. We use the real
basis e1, . . . , en, ie1, . . . , ien.

Proposition 8.2.5. If we use a different complex basis, we get the same real
orientation.

Proof. In R the bases are represented by

(
a b
−b a

)
so the determinant is

a2 + b2 > 0. �

8.2.2. Orientation on Vector Bundles. Given a vector bundle E over a
space X, a orientation of E is a choice of orientations for each Ep, p ∈ X which
are “locally compatible”. So for E|U = U × Rn, p ∈ U , Ep ∼= p × Rn preserving
orientation for a fixed orientation of Rn. That is, the orientations agree on overlaps.

If X is a connected space, E has either no or two orientations. If it has one,
we can pick the opposite one, at each point. And if it is connected, it is easy to
see that the orientation is determined by the orientation for any Ep, p ∈ X. As a
proof, look at the subsets of X where the orientations agree, call that U , and where
they disagree, call that V . Then U and V are disjoint, and X = U ∪ V . So one of
these is all of X.
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Again if E,F are oriented, so is E ⊕ F , and we work with stable orientations
E ⊕ ε1 (or E ⊕ εk for k > 1).

A vector bundle can be described by “transition data”. Suppose X is covered
by open sets Ui. Now for the different Ui’s on the overlap, we have a function

Ui ∩ Uj
gij→ GL(n,R) where the matrix tells us how Ui × Rn identifies to Uj × Rn,

subject to on Ui ∩ Uj ∩ Uk, gijgik = gik.

Example 8.2.6. Think of the Mobius strip as a bundle over a cut off circle U
and another cut off circle V where the intersection is a piece on the top and a piece
on the bottom.

U VU ∩ V

Figure 8.2.7.

Then the way we glue these together is given by g = +1 on one component and
g = −1 on the other, which will give us the twist as we go around.

Actually this bundle has no orientation, since if we give an orientation, when
we come back around the orientation will be going the other way.

The condition for orientation is that det(gij) > 0.

8.2.3. Orientation on Manifolds. For smooth manifolds, the orientations
will be given by the coordinates. Before, we had on the overlaps the Jacobian of
the change of coordinates, with the condition D(ϕj ◦ ϕ−1

i ) 6= 0. Now we just have

det(D(ϕj ◦ ϕ−1
i )) > 0.

Giving an orientation for Mn is the same as given an orientation for TM : both
are given in terms of the determinant of the derivatives of ϕj ◦ϕ−1

i . So the Jacobian
matrix of change of coordinates is the same as the transition data on TM .

If M is an oriented manifold, we write −M for M with the opposite orientation.
This is well-defined even for non-connected manifolds: on each piece we flip the
orientation.

Remark 8.2.8. For M 0-dimensional we use stable orientations of TM = {0}.

So from here on if a manifold is 0-dimension we will take its stabilization.

Proposition 8.2.9. An orientation for M determines one for ∂M .

Proof. T (∂M)⊕ε1 = TM |∂M using ε1 to be an outward pointing vector. �

Now the orientation may not be what you think.

Example 8.2.10. Pick an orientation for the interval I, say TI = I ×R1 using
a rightward-pointing vector.

0 1

Figure 8.2.11.
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Now what about the boundary of the interval? ∂I is {1} on one end with the
positive orientation, but on the other end if we take the outward pointing vector,
that does not agree with the positive orientation. So we get {0} with the opposite
manifold. So ∂I = {1} ∪ −{0}.

So if we take M × I with orientation going up from 0 to 1 on the interval, then
∂(M × I) = M ∪ −M .

M × 0

M × 1

M × I

Figure 8.2.12.

Remark 8.2.13. If M is an oriented complex manifold, M as a real manifold
has a natural orientation.

8.3. Degree of Maps for Oriented Manifolds

Say M and N are oriented manifolds, and f : M → N a smooth map. Let
q ∈ N be a regular point; we saw that f−1(q) is a smooth submanifold of dimension
m − n. We will see that f−1(q) is also oriented. Why is that? What did we do
with coordinates? The way we saw that this was a smooth manifold was that for
p ∈ f−1(q) we broke up (TM)p and we had the coordinates that we broke up into co-

ordinates for (T (f−1(q)))p ↪→ (TM)p, then we took (TM)p/T (f−1(q))p
Df→ (TN)q

as an isomorphism. So we can do the same thing except preserving orientation.
In particular if m = n then f−1(q) is an oriented 0-dimensional manifold and

each point and each point p ∈ f−1(q) gets a sign ε(p) = ±1 depending on its
orientation.

We need the following:

Proposition 8.3.1. An oriented compact 1-dimensional manifold is a union
of intervals and circles.

Corollary 8.3.2. The boundary of an oriented compact 1-dimensional man-
ifold has a total of 0 points when these are counted with signs.

For example ∂I will be one end point minus the other. The total sign is 0.
So now for oriented manifolds, we redo our theory of degree. We now prove the

following:

Definition 8.3.3. For oriented closed smooth manifolds Mn, Nn and M
f→ N

a smooth map, and q ∈ N a regular value, we define

degq(f) =
∑

p∈f−1(q)

ε(p),
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the sum of the signs of the values in f−1(q). We can also write this as

degq(f) =
∑

p∈f−1(q)

sign((Df)p).

Note that this now defines the degree in Z, not Z2.
We had two facts before about degree mod 2:

• deg(f) is independent of the choice of the regular value q
• deg(f) is equal for homotopic maps

Now we get the same thing in Z for M,N oriented.
Remember we had the cylinder M×I and we had inverse images of maps being

loops that hung off the top or bottom, circles floating in the middle, or lines from
the top to the bottom. But now we have orientation for all of them, and the degree
on the boundary is 0, in the same way.

•

•

+

−

•

•

+

−
• •
− +

Figure 8.3.4.

8.4. Applications

8.4.1. The Fundamental Theorem of Algebra.

Theorem 8.4.1 (Fundamental Theorem of Algebra). Suppose f is a complex
polynomial of algebraic degree > 0, then f has a root.

Proof. Extend f : C → C to the Riemann sphere S2 = C ∪ {∞}, using the
coordinates on S2 \ {∞} = C the coordinate z; and on S2 \ {0} we use 1/z.

So we extend f to f̂ : S2 → S2 where f̂(z) = f(z), z 6= ∞, and f̂(∞) = ∞.
This is continuous. We use the following lemma:

Lemma 8.4.2. The topological degree of f̂ is equal to the algebraic degree of f .

One way to see that they agree is that they are homotopy equivalent, so we

reduce to a special case of replacing f̂ ; in a special case f(z) = zn they obviously
agree, then in general we can create a homotopy from a polynomial of degree n,
say zn + a1z

n−1 + . . .+ an to zn, by ft(z) = zn + (1− t)(a1z
n−1 + . . .+ an). This

yields by extension a homotopy of f̂(z) to (̂zn).
But if f has no root, the topological degree of f is 0, since 0 is a regular value,

and then deg0(f̂) = 0. �

Note that this also immediately tells us why us have n roots, since in the inverse
image of any regular value, we should get n values with sign. In fact f(z) = c has
n roots.
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8.4.2. Homotopy Groups of Spheres. We look at applications of degree
of maps to the πk(Sn), where πk(X) = [Sk, X]+, the k-th homotopy group of X,
that is, the set of all homotopies of Sk into X. We studied in great detail the case
of k = 1, which is the fundamental group. We will look briefly at k > 1.

What is non-trivial is that for k > 1, πk(X) turns out to be an abelian group.
One way to think about addition is if we have a map f from the k-sphere to X

and another map g from the k-sphere to X, for f + g we look at the quotient map

Sk
q→ Sk/Sk−1 squeezing the equator to a point, so we will take f + g = (f ∧ g) ◦ q

where f ∧ g is taking f on the “top” sphere and g on the “bottom” sphere.

•
q

X
f

g

Figure 8.4.3.

Another way to think about the addition is as follows: maps Sk → X can be

represented also by D
f→ X with f(Sk−1) = x, where x is the basepoint. Then this

is the same as mapping a k-sphere, since this is squeezing the boundary of Dk to
the point. This is like in the case where k = 1 where we took a line and sent the
two endpoints to a point. That is, we have Dk → Dk/Sk−1 = Sk → X.

A third way is to consider maps Rk f→ X with f(Rk \ bounded set) = x. So if
everything outside some bounded set gets squeezed to a point then this is the same
thing.

The new idea is that πk(X) is commutative. Why is it commutative? There
are many proofs of this; a very nice way to do it is to use adjoint functors and
categories, but a very fast geometric proof is the following:

If k > 1, then everything in f except for a bounded section and everything in
g except for a bounded section go to the basepoint, then we can just rotate to get
g+ f . This works in higher dimensions but not in k = 1 since in higher dimensions
we have more degrees of freedom.

Another proof is, letting ΩX being the loops on X based at x, to show that
πk(X) = πk−1(ΩX).

Well there is no general way to compute these groups, even for spheres, but

we can show two facts: that πk(Sn) = 0 for 0 < k < n and πn(Sn)
deg→ Z is an

isomorphism.
Maps wrapping high-dimensional spheres to lower dimensional spheres are very

tricky, and in fact quite surprising to hear exist. What is known is that π3(S2) = Z,
and in fact one can show that in general for m > n, πn(Sm) is a finite abelian group,
except for when m is even and n = 2m − 1, in which case it is Z ⊕ finite group.
However their orders are quite complicated, and their computation involves a lot
of number theory and algebra.

Theorem 8.4.4. πk(Sn) = 0 for 0 < k < n.

Proof. So for Sk
f→ Sn, we saw that f ∼

h
smooth map, so we can assume

up to homotopy that f is smooth. Now most points were regular values; they are
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open and dense in Sn. But if k < n, the only regular values are the ones not in the
image, that is, “most” points are not in the image of f . So pick q 6∈ Im(f). But
then we are done since once we have Sk → Sn \ {q}, well Sn \ {q} is Rn, which is
contractible! So f is nullhomotopic. �

Theorem 8.4.5. πn(Sn)
deg→ Z is an isomorphism.

Proof. As we saw previously, we had a well-defined map πn(Sn)
deg→ Z. Now

it is easy to see that deg(f + g) = deg(f) + deg(g): we can just use smooth f and
g and just count. Notice that deg(ISn) = 1. So deg is surjective.

Exercise 8.4.6. Check that f + (−f) ∼
h

0.

The tricky thing is to show that deg : πn(Sn)→ Z is injective.
The case n = 1 we did, π1(S1) = Z generated by [IdS1 ].
In general there is a homomorphism of suspension πk(X) → πk+1(ΣX). We

claim that there is a way to compare maps in one dimension to maps in one dimen-

sion higher. In fact in general for A
f→ B we can get ΣA

Σf→ ΣB where for the sus-
pension map Σf we just take f at every “level”, that is, for [−1, 1]×A→ [−1, 1]×B
we use Σf = Id[−1,1]×f and quotient out at −1 and 1. In particular for spheres

we have πk(X)
Σ→ πk+1(ΣX). It is easy to see that this is a homomorphism and is

compatible with homotopy.

Now why is this of interest? We can try to use this since we had π1(S1)
deg→ Z,

and we have π1(S1)
Σ→ π2(S2)

Σ→ π3(S3)
Σ→ . . . :

π1(S1) π2(S3) π2(S3) · · ·

Z

Σ Σ Σ

deg
deg

deg

Figure 8.4.7.

We wanted to show that all of the degree maps from πk(Sk) → Z are also
isomorphisms. Now deg(Σf) = deg(f); the proof is to take f smooth and count:
at any level the degree is the same. So this is another way to see that the degree is
surjective.

We see that πk(Sk) = Z⊕? where Z is just the multiples of [IdSk ]. Now we
want to see that the ? is 0. More concretely the ? is the ker(deg). We need to see
that it isn’t there. Well in k = 1 we already saw that, so it’s alright.

For the rest, we will argue by induction. The inductive step will be the following
lemma:

Lemma 8.4.8. Σ : πk(Sk)→ πk+1(Sk+1) is surjective.

Once we know this we will be done, since then π2(S2) is just Z, and so on, since
we already knew that for k > 1 that πk(Sk) contains Z from the suspension. This
yields inductively that πk(Sk) = Z.
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The fast way is to show that every map in πk+1(Sk+1) can be desuspended. In
general there is no way to desuspend a map.

So given g : Sk+1 : Sk+1 we will show that g ∼
h

Σf , f : Sk → Sk. So pick a

p, q regular values of g, where q is in the upper hemisphere and p is in the lower
hemisphere, then consider g−1(q) and g−1(p). Now by uniformity of manifolds
we can assume that g−1(q) is in the upper hemisphere and g−1(p) is in the lower
hemisphere. Now if we take a little disk around q and a little disk around p, which
are sort of like polar caps, then squeeze all but the caps around q and p to the
equator. So we can thus assume that the equator Sk is mapping to Sk, the lower
hemisphere to maps to the lower hemisphere, and the upper hemisphere maps to
the upper hemisphere.

In summary, any map g : Sk+1 → Sk+1 is homotopic to a map that sends
the the upper hemisphere to the upper hemisphere, the lower hemisphere to the
lower hemisphere, and the equator to the equator. Then g ∼

h
Σ(g|equator) where

g|equator : Sk → Sk: we linearly interpolate between g and Σ(g|equator) on the upper
disk and the lower disk. Notice that nothing changes on the equator. �

There is a deep theorem about desuspensions in general:

Theorem 8.4.9 (Freudenthal Desuspension Theorem). πk(X)
Σ→ πk+1(ΣX) is

isomorphic if X is n-connected and k < 2n− 1.

A space is n-connected if it is connected and πk(X) = 0 for k 6 n.
What this tells us is that after a while all of the maps

π3(S2)
Σ→ π4(S3)

Σ→ π5(S4)
Σ→ · · ·

are isomorphisms, that is, it stabilizes to the right to Z2. There is a field studying
this called stable homotopy theory.
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CHAPTER 9

Homology Groups

9.1. Cellular Homology

9.1.1. Cell Complexes. The idea is that we build spaces inductively using
disks of increasing dimension.

We build up a space X by starting with some 0-dimensional space sitting in
some 1-dimensional space, etc, X0 ⊂ X1 ⊂ · · · ⊂ Xn = X, where Xi is the
i-skeleton.

X0 is just a set of points with the discrete topology. X1 is a graph. In general
Xk+1 is obtained as follows: take Xk and glue on stuff of the next dimension, in
general disks which we call e, so Xk+1 = Xk ∪ ek+1 ∪ ek+1 ∪ . . ., where these k+ 1
dimensional disks are glued to Xk using what are called attaching maps.

Xk

ek+1

Sk

f(Sk)

f

Figure 9.1.1.

These are maps f : Sk = ∂ek+1 → Xk, then we glue by taking the quotient
Xk ∪ ek+1/(u ∼ f(u)) where u ∈ Sk = ∂ek+1 and f(u) ∈ Xk.

Xk ∪ ek+1/(u ∼ f(u))

Figure 9.1.2.

85
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Example 9.1.3. One way to form a circle is to take two points, and then glue
two lines to it. That is, S1 = X has X0 =2 points, then X1 = 2 points ∪f e1 ∪g e1

where f and g attach one end of the line to one point and the other end to the
other point.

• •
f f

g g

e1

e1

 • •

e1

e1

Figure 9.1.4.

Another way is to break it up into three points and three edges, or we can even
just use one point and one 1-cell, with both ends squeezed to a point.

•e0

e1

Figure 9.1.5.

If the attaching map is required to be an inclusion then this is called a regular
complex.

In general we want as few complexes as possible since that allows the eventual
algebra to be very simple.

Example 9.1.6. S2 = e0 ∪ e0 ∪α e1 ∪β e1 ∪f e2 ∪g e2.

• •e0 e0

e1

e2

e2

Figure 9.1.7.

This can be extended into a cell decomposition of Sn. This is a very expensive
way to construct Sn, but it is a regular decomposition. Another way to construct
Sn is Sn = e0 ∪f en where f sends Sk−1 to a point.
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Example 9.1.8. In RPn has all of the antipodes identified, so RP0 = e0,
RP1 = e0 ∪f0 e1, . . ., RPn = e0 ∪f0 e1 ∪f1 e2 ∪f2 . . . ∪fn−1 e

n. This has a nice

inclusion since each RPk attaches to the previous one RPk−1. The attaching map

∂en = Sn−1 fn−1→ RPn−1 is the 2-to-1 covering map wrapping around twice. It turns
out that this is a minimal cell decomposition for RPn.

Example 9.1.9. One way to decompose a torus is to take a 0-dimensional cell
e0 and attaching two edges e1

a and e1
b so that it looks like a figure 8, then everything

else is just e2 filling everything in.

•

e0e1
a e1

b

e2

Figure 9.1.10.

Another way to look at this is as follows: recall that we can get a torus by
taking a square and gluing opposite sides together. Now when we do this all the
corners get identified to the same point, so this is e0. The horizontal edges are e1

a

and the vertical edges are e1
b . Then the inside is e2.

e1
a

e1
a

e1
b e1

b

•
e0

•
e0

•e
0

• e
0

e2

Figure 9.1.11.

So we get Torus = e0 ∪α e1 ∪β e1 ∪f e2, where α and β are obvious, and then
f = e1

ae
1
b(e

1
a)−1(e1

b)
−1.

Exercise 9.1.12. Do the same thing for the Klein bottle.

In fact one can show that every smooth manifold has a cell decomposition, but
these need not be unique. In fact not even the minimal one is unique.

Cell decompositions are a very useful auxiliary tool, but we will need to confront
the problem of showing that what we get from the cell decomposition is independent
of the decomposition itself.

9.1.2. Using Cell Decompositions. What we want to do is “count” k-
dimensional holes in X. Now what is a hole? It seems like a circle has a hole
in it. Intuitively, we can define a k-dimensional hole as a k-dimensional area with
the property that with boundary equal to 0. But this is not quite correct, since D2

is like a circle but filled in. So we have to throw out the ones that are filled in. So
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we quotient out by the boundaries of k+ 1 dimensional areas. When we make this
precise we will have the homology group Hk(X).

So let Ck(X), called the k-dimensional chains of X, be the sum of k-cells with
coefficients for the moment in the integers. So Ck(X) =

⊕
k-cells in X Z.

Example 9.1.13. For a torus, we had a decomposition Torus = e0∪e1
a∪e1

b∪e2.
So C2(X) = Ze2, C1(X) = Ze1

a ⊕ Ze1
b , and C0(X) = Ze0.

Now these chain groups depend heavily on the decomposition. But between
each of these will be a boundary map ∂k where k is the dimension. Without a
formal definition, what is going to be the boundary of the 2-cell in the torus? Well,
∂e2 = e1

a + e1
b − e1

a − e1
b = 0. What about the 1-cells? Well ∂e1 = e0 − e0 = 0 as

well.
To make things more precise,

Hk(X) = ker(Ck(X)
∂k→ Ck−1(X))/ Im(Ck+1(X)

∂k+1→ Ck(X))

Lemma 9.1.14. When ∂k = 0 and ∂k+1 = 0 then Hk(X) = Ck(X).

So for a torus, the homology groups are the chain groups. That is, H2(torus) =
Z, H1(torus) = Z ⊕ Z, and H0(torus) = Z. It turns out that H0 measures how
many pieces there are, so for the torus there is only one piece.

The amazing fact is that if we took a different decomposition, we get different
chain groups but the homology groups are the same.

A big thing that we will not prove is the following:

Theorem 9.1.15. The Hk(X) are independent of the choice of a cell decompo-
sition of X.

So these homology groups are a very important way of representing the holes
in a space.

So before even giving formal definitions of boundary maps, we can assign some
exercises:

Exercise 9.1.16. Compute Hk(S2).

Exercise 9.1.17. Compute Hk(RP2).

Now the coefficients Z here can be replaced with, say, R or C or Z2, then these
groups would be for example H2(torus) = Z2, H1(torus) = Z2⊕Z2, H0(torus) = Z2.
In fact Z already carries the most information, but there are reasons to use R or C
to fit well in the system being used.

9.1.3. Chain Complexes and Cellular Homology. We make rigorous go-
ing from the cell complex X to the cellular chain complex

Cn(X)
∂n→ Cn−1(X)

∂n−1→ Cn−2(X)
∂n−2→ · · · ,

as well as the cellular homology groups

Hk(X) =
Ker(Ck(X)

∂k→ Ck−1(X))

Im(Ck+1(X)
∂k+1→ Ck(X))

.

Previously we were able to see when the boundary maps were 0 geometrically, but
we need a general way to do this.
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Formally, we will have Cn(X;R) =
⊕

αRα where α is an n-cell of X, and R is
the field of coefficients R = Z,R,C,Q,Z2,Zp depending on what is useful. One of
the nice things about using Z2 is that one can ignore signs.

We need a definition of ∂n, the linear map from Cn(X;R) to Cn−1(X;R), which
records how n-cells are attached to (n− 1)-cells.

Suppose the n-cells of X are given by en1 , . . . , e
n
k , and the (n− 1)-cells of X are

given by en−1
1 , . . . , en−1

` , then ∂n is a (k × `)-matrix. Then what are the entries of
the matrix? Well it will be geometrically obvious when we work it out. Well we had
the (n − 1)-skeleton Xn−1, then we have an attaching map ∂eni = Sn−1

i → Xn−1,

where Xn = Xn−1 ∪f1 en1 ∪f2 en2 ∪ . . .∪fk enk , and Xn−1 = Xn−2 ∪ en−1
1 ∪ . . .∪ en−1

` .
Now in the matrix ∂n = ((aij)), then aij records how many times the boundary

of Sn−1
i = ∂eni “runs through” the cell en−1

j .

Now let us look at what happens when we take Xn−1 and we squeeze out the
(n−2)-skeleton to get Xn−1/Xn−2. Now what do we get? Each of these disks en−1

i

becomes a sphere, so we get a nice bouquet of spheres. Now suppose we further
divided by everything except the single sphere,

Xn−1/(Xn−2 ∪ en−1
1 ∪ . . . ∪ en−1

j−1 ∪ e
n−1
j+1 ∪ . . . ∪ e

n−1
` ) = Sn−1

j .

Call this quotient map qj since it focuses our attention on the j-th sphere. So now

aij should determine how many times Sn−1
i runs around Sn−1

j via gj ◦fi. So how do

we do this? We just use the degree, so aij = deg(qj ◦ fi). And that is the definition
of ∂n.

Example 9.1.18. Let X be the Klein bottle, which is a square with its sides
identified, then we have X = e0 ∪ e1

a ∪ e1
b ∪ e2 where e1

b is the two sides identified
with a flip:

e1
a

e1
a

e1
b e1

b

•
e0

•
e0

•e
0

• e
0

e2

Figure 9.1.19.

Then C2(X) = Re2, C1(X) = Re1
a ⊕Re1

b , and C0(X) = Re0. Well ∂1 = 0, but

∂2 is a bit more tricky. Well ∂2(e2) = e1
a + e1

b − e1
a + e1

b = 0e1
a + 2e1

b =

(
0
2

)
.

Now let us compute the homology groups. Of course for different coefficients
we will get different numbers, but let us do it for R = Z. Well for dimension 0,
everything is in the kernel, and the image is 0, so H0(X) = Z/0 = Z. For dimension
1, this is tricky because the kernel is Z⊕ Z, but we are dividing out by the image

of

(
0
2

)
, so we have H1(X) = (Z⊕Z)/(0⊕ 2Z) = Z⊕Z2. Now for dimension 2, the

kernel of ∂2 is 0, and the image from above is 0, so we have H2(X) = 0/0 = 0.
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Now let us take R = Q. For dimension 0, we’d just get Q. But for dimension
1, we would get (Q ⊕ Q)/(0 ⊕ 2Q) = Q, since everything in Q is a multiple of 2.
This is usual for fields of characteristic 0. For dimension 2 we get 0 again as well.

Now for R = Z2, then in dimension 0, it’s Z2, and in dimension 1 we get Z2⊕Z2,

but what happens in dimension 2? Well ∂2 =

(
0
0

)
so the kernel is everything, and

we get Z2! Interestingly enough, using R = Z2 we get the same homology groups
for the Torus, since we no longer care about signs.

Now we have snuck something in here, that we have not objected to before.
We had Hk(X) = Ker(∂k)/ Im(∂k+1). In order to take this quotient we need to
know that Im(∂k+1) ⊂ Ker(∂k). Well it turns out that it is, and we have been
implicitly using it, but we did not prove it before. This is equivalent to saying that
∂k ◦ ∂k+1 = 0.

So now a chain complex , more precisely, is a sequence of abelian groups (or
vector spaces in particular) with linear maps that can be arranged

Cn
∂n→ Cn−1

∂n−1→ Cn−2
∂n−2→ · · · ∂1→ C0

satisfying ∂k ◦ ∂k+1 = 0.
In fact we will not prove that ∂k ◦ ∂k+1 = 0 here, since we will see another

setting, with another definition of the chain complex, where it is easier to prove.
As an aside, we note that Hk = 0 ⇐⇒ Im ∂k+1 = Ker ∂k. We then say that

the chain complex is exact at k, and the entire chain is called an exact sequence
if it is exact at all k. That is, this is a chain complex whose homology vanishes.
Ker ∂k is sometimes known as the group of k cycles written Zk, and Im ∂k+1 is the
k-boundaries Bk. So Hk = Zk/Bk.

9.2. Simplicial Homology

Whereas before we cut spaces up into cell complexes, now we cut things up
into triangles.

For two dimensions, a good way to get an equilateral trinagle is to, in three
dimensions, take points at (1, 0, 0), (0, 1, 0), and (0, 0, 1) and join them.

•

•
•

Figure 9.2.1.

Definition 9.2.2. The n-dimensional simplex (or n-simplex) ∆n is a set of
vertices {(x0, x1, . . . , xn) ∈ Rn+1 | 0 6 xi,

∑
xi = 1}.

For example, ∆1 is just a line. By deleting x0, we can get an injective map
fn : ∆n → Rn such that fn(∆n) = {(x1, . . . , xn) ∈ Rn | 0 6 xi;

∑
xi 6 1}. This

gives us another way to view the n-simplex.
There are points that are vertices of ∆n, which we will write as v0 = (1, 0, . . . , 0),

. . ., vn = (0, 0, . . . , 1). So we may write ∆n = 〈v0, . . . , vn〉.



9.2. SIMPLICIAL HOMOLOGY 91

Now a face of a simplex 〈v0, . . . , vn〉 is obtained by deleting one of the vertices.
Now we define the boundary of a simplex a sum of combinations of its simplices.
Now we need to introduce signs, since even in one-dimension we have ∂〈v0, v1〉 =
v1 − v0. So ∂n(∆n) =

∑n
i=0(−1)i〈v0, v1, . . . , v̂i, . . . , vn〉 where v̂i denotes that vi is

removed. Then for a triangle 〈v0, v1, v2〉 going counterclockwise as in Figure 9.2.3,
we have ∂〈v0, v1, v2〉 = 〈v0, v1〉+ 〈v1, v2〉 − 〈v0, v2〉.

•v1
•v0

•
v2

Figure 9.2.3.

Now how do we use this? We take any space, cut it up into triangles, and
then get a chain complex and then compute the homology groups. This is purely
mechanical and does not require degree of maps.

So a triangulation of X is a covering of X by 1-to-1 images of order-preserving

maps 〈v0, . . . , vn〉
f→ X, which we call simplices on X satisfying the following

conditions:

(1) Any face of a simplex on X is also a simplex in X.
(2) Any two simplices intersect only in one of their subsimplices, or all of its

subsimplices.

Example 9.2.4. We get a traingulation of the torus. Recall that we can just
get a torus by taking a square and identifying its sides. Now we can cut up the
square into ninths, then draw a diagonal across each little square from bottom left
to top right.

a

a

b b

• • •

• • •

• • •

Figure 9.2.5.

The number of ∆2 simplices is 18, the number of ∆1 simplices is 27, and the
number of ∆0 simplices is 9.

So we can now form what is called the simplical chain complex of a space X.
As before, we let Ck(X) be the formal linear combinations of the ∆k in X. Then

we can get Ck(X)
∂k→ Ck−1(X) using the previously given formula, and then define
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homology Hk as before, which will turn out to be isomorphic to the homology
groups as in cellular chain complexes.

We will prove the following:

Proposition 9.2.6. ∂k−1 ◦ ∂k = 0.

Proof. ∂k+1 ◦ ∂k(〈v0, . . . , vk〉) =
∑

(±1∓ 1)i〈v0, ˆ. . ., ˆ. . ., vk〉.

Exercise 9.2.7. Check that the (−1)i always come up with opposite signs,
regardless of which vertices are ommitted.

We will check it for the two-dimensional case:

∂2(〈v0, v1, v2〉) = 〈v0, v1〉+ 〈v1, v2〉 − 〈v0, v2〉
then

∂1 ◦ ∂2(〈v0, v1, v2〉) = (v1 − v0) + (v2 − v1)− (v2 − v0) = 0 �

People attempted to prove that the homology groups are independent of the
triangulation, since it is easily shown that refining the triangulation by cutting up
the triangle even more does not change the homology groups, then if one could
show that any two triangulations had a common refinement, this would be done.
It turns out that this is not true.

9.3. Singular Homology

Before we had Cell Complexes which led to cellular chain complexes, and then
we had Triangulation which led to simplicial chain complexes, and in both cases

we computed the homology groups H∗(X) = Ker(∂∗)
Im(∂∗+1) .

Now we will take a space X and get a singular chain complex, and then we get
the homology groups in the same way.

So a singular1 k-simplex in X is a function f : ∆k → X, so it is a parameterized
k-simplex into X. We allow f not injective, so this allows very crummy images. So
in other words, we will allow the image of ∆k to cross itself.

Then we define the singular chain complex Ck(X)
∂k→ Ck−1(X) → · · · , where

Ck(X) is the finite formal linear combination of all singular k-simplices.

Example 9.3.1. We look at the case of X = {point}. We will get something
wacky where we get something in every dimension, but hopefully when we get to
homology it all wipes out. Well for ∆k → {point} there is only one map, the map
sending the complex to a point. Using coefficients R = Z, then C∗(point) = Z in
every dimension > 0. So the chain complex is very big:

· · · → Z ∂3→ Z ∂2→ Z ∂1→ Z.
But the boundary is defined in the usual way, as the alternating sum of its faces,
regarded using the restrictions of f : ∆k → X as singular (k − 1)-simplices in X.

Well ∂1(∆1) = ∆0−∆0 = 0∆0, but ∂2(∆2) = ∆1−∆1 + ∆1 = 1∆1, and so on.
So in the chain complex of a point, the ∂i are alternately +1 and 0. To check, we
note that ∂k−1∂k = 0, as one of them is 0. So this is as we expect a chain complex.

So that is the chain complex, but what is the homology, which we really care
about? There are only three cases we care about: dimension 0, and then odd and
even dimensions, since the chain complex repeats.

1This means that it is allowed to be singular, not that it must be
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Well H0 = Ker(C0(X)→0)

Im(C1(X)
∂1→C0(X))

= Ker(Z→0)

Im(Z×0→Z)
= Z

0 = Z.

Next, H1(X) = Ker(Z
∂1=0
→ Z)

Im(Z
∂2=1
→ Z)

= Z
Z = 0. This is also Hodd(X).

Finally, Heven(X) = H2(X) = Ker(Z 1→Z)

Im(Z 0→Z)
= 0. So then H0(point) = Z and

H∗(point) = 0 for ∗ 6= 0.
So even though the chain complex looked dangerous, it all washes out and ends

up not mattering at the end of the day. We can show this in general.

The disadvantage of this is that it gives an uncountable basis to work with,
but it has a few big advantages. One is that no extra structure on X is being used
(that is, this is choiceless). The second is that it makes it easier to compare spaces.





CHAPTER 10

Comparing Homology Groups of Spaces

10.1. Induced Homomorphisms

Recall that when we had X
f→ Y we had induced maps on π1, . . . , πn, . . ..

We want induced maps in H∗(·), so that we can compare homology groups via
continuous maps between them.

Example 10.1.1. A special case is suppose that A ↪→
i
X, and in fact A is a

sub-cell complex of X. It is very obvious how we are going to go around comparing
their chain complexes: Ck(A) ↪→

ik
Ck(X). Similarly, we get Ck−1(A) ↪→

ik−1

Ck−1(X).

So not only do we get the corresponding chain complexes, the boundary maps are
in fact compatible, and we get a commutative diagram:

Ck(A) Ck(X)

Ck−1(A) Ck−1(X)

ik

ik−1

∂k ∂k

Figure 10.1.2.

That is, ∂k ◦ ik = ik−1 ◦ ∂k.
So the story is that the whole of the chain complex of A is sitting in the chain

complex of X. For short, we will say that C∗(A) ↪→
(ik)

C∗(X).

That is fine on the level of chain complexes, but what we really care about is
homology. So what are the consequences for homology?

It is easy to see that as an algebraic consequence this implies that

Ker(Ck(A)
∂k→ Ck−1(A)) ↪→

i
Ker(Ck(X)

∂k→ Ck−1(X)).

This is called a diagram chase argument: we just follow the linear maps around.

In detail, if z ∈ Ker(Ck(A)
∂k→ Ck−1(A)) then by definition ∂k(z) = 0 in Ck−1(A),

so, ik−1 ◦ ∂k(z) = 0 in Ck−1(X). But this is ∂k ◦ ik(z) = ik−1 ◦ ∂k(z) = 0. So

ik(z) ∈ Ck(X) is in Ker(Ck(X)
∂k→ Ck−1(X)).

Exercise 10.1.3. Similarly, show that

Im(Ck(A)
∂k→ Ck−1(A))

ik→ Im(Ck(X)
∂k→ Ck−1(X)).

So if kernels map to kernels and images map to images, then quotients map
to quotients: Hk = Ker

Im maps as well. So we get a map, called the induced map

95
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or induced homomorphism, from Hk(A)
i∗→ Hk(X). This maps the k-dimensional

holes in A to their image in X under inclusion.

So we see that if A is a cellular complex X we get an induced homomorphism
Hk(A)→ Hk(X).

A similar argument works for triangulated spaces (simplicial complexes).
A warning: even though A ↪→

i
X is an inclusion and similarly for the chain

complexes, the kernels, and the images, the map Hk(A) → Hk(X) may fail to be
injective. The algebraic reason is that this involves quotient groups. Geometrically,
just because A is sitting in X does not mean X has more holes than A; some holes
in A may get filled in X. So intuitively something might go to 0. We will see that
this is what really happens.

Example 10.1.4. Take the decomposition Sn = e0 ∪f en where f : Sn−1 → e0

is a constant map. That is a very simple picture since it only has cells in dimension
0 and n, so the chain complex has Z in dimension 0 and Z in dimension n, and 0
everywhere else. So obviously all of the boundary maps are 0, so that Hi

∼= Ci, and
we have

H∗(S
n) =

{
Z ∗ = 0 or ∗ = n

0 0 < ∗ < n
.

In a disk, we should see the homology disappear. So let us do a cell decompo-
sition for a disk: Dn+1 = e0 ∪f en ∪g en+1 where f is as before and g : Sn → Sn

is the identiy map IdSn , where en+1 fills in the sphere. So now the picture is Z in
dimension 0, then there is Z in dimension n, and another Z in dimension (n + 1).
So ∂n+1 = ×1 = deg(g). So for the homology what is new is what happens in
dimension n:

Hn(Dn+1) =
Ker(Z→ 0)

Im(Z ×1→ Z)
=

Z
Z

= 0.

But

Hn+1(Dn+1) =
Ker(Z ×1→ Z)

Im(0→ Z)
=

0

0
= 0

so

H∗(D
n+1) =

{
0 ∗ > 0

Z ∗ = 0
,

which is the same as a point.
Now what happens when we compare the sphere and the disk? Well we have

Sn
i
↪→ Dn+1, but Z = Hn(Sn)

i∗=0→ Hn(Dn+1) = 0, so the induced map is not
injective.

This tells us what to do for inclusions, but the question is how to do this for
any continuous map.

More generally, given any continuous map f : X → Y we get induced homo-
morphisms f∗ : Hk(X) → Hk(Y ), with any coefficients. So far we considered the
case where f is an inclusion.

This is most easily seen in singular homology. The reason is the following: for

a parameterized (singular) simplex ∆k α→ X, and we take it under a map X
f→ Y ,

it is easy to see how to get a parameterized simplex in Y : just take the composite
map. We do not have a problem if the image f ◦ α is not nice. So f∗(α) = (f ◦ α)
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gives a map on bases of singular simplices and thus C∗(X)→ C∗(Y ) just as before
for inclusions, so that we get a commutative map with the boundary maps, etc. So

we get H∗(X)
f∗→ H∗(Y ).

To break this up into steps, given X
f→ Y , we get a homomorphism of the

singular chain group in dimension k, Ck(X)
fk→ Ck(Y ). We defined a basis element,

a parameterized k-simplex in X, ∆k α→ X by fk(α) = (f ◦ α), which is a basis
element in Ck(Y ).

Ck(X) Ck(Y )

Ck−1(X) Ck−1(Y )

Ck−2(X) Ck−2(Y )

fk

fk−1

fk−2

∂Xk+1 ∂Yk+1

∂Xk ∂Yk

∂Xk−1 ∂Yk−1

∂Xk−2 ∂Yk−2

Figure 10.1.5.

Then we have maps ∂Yk ◦ fk = fk−1 ◦ ∂Xk for the chain complexes, and then

we have Ker(∂Xk )
fk|→ Ker(∂Yk ) and Im(∂Xk )

fk|→ Im(∂Yk ), so the quotient homology

groups have a homomorphism Hk(X)
f∗→ Hk(Y ).

It is a lot harder to do this for the other approaches (cellular or simplicial homol-
ogy). A difficulty is that f may not be very compatible with the cell decomposition
or the triangulation. There is a technique for doing this, by allowing subdivision of
the cells (or simplices) and prove something called cellular (or simplicial) approx-
imation, which says that if we make the cells (or triangles) fine enough, we can
approximate the map by one that maps cells to cells (or triangles to triangles).

Some properties of the induced homomorphism are as follows: for X
IdX→ X,

(IdX)∗ = IdH∗(X); and X
f→ Y

g→ Z, then (g ◦ f)∗ = g∗ ◦ f∗. These properties are
called naturality, and this is similar to the properties of the induced homomorphism
for the fundamental group.

Exercise 10.1.6.

(1) Show that if A ↪→
i
X has a retraction, that is, a map r : X → A with

r ◦ i = IdA, then i∗ : Hk(A)→ Hk(X) is injective.
(2) Show that there is no retraction from a Dn+1 to Sn.
(3) Conclude the Brouwer Fixed Point Theorem.
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The relation between H∗(A) and H∗(X) for A ↪→ X is subtle. We want to
figure out what the story is.

To explore this, we introduce the relative homology groups Hk(X,A) of the pair
(X,A) for A ⊂ X. The idea is that this measures their “difference”.

Now Ck(A) ↪→ Ck(X), so as an algebraist how do we compare them? We take
their quotient. So we define the relative chain group Ck(X,A) = Ck(X)/Ck(A).
This works in all cases (cellular, simplicial, singular). These themselves form a
relative chain complex of (X,A). Now we have the following diagram:

Ck(A) Ck(X) Ck(X,A)

Ck−1(A) Ck−1(X) Ck(X,A)

ik

ik−1

quotient

quotient

∂Ak ∂Xk ∂
(X,A)
k

Figure 10.1.7.

where it is a simple fact of linear algebra that this diagram gives us a map ∂
(X,A)
k

for the quotient.
Thus we can form the quotient chain complex , which are groups defined dimen-

sion by dimension, to get C∗(X,A). Then we can take H∗(X,A).

Remark 10.1.8. For A a subcomplex of X, these are nearly isomorphic to
H∗(X/A). In fact, H∗(X,A) ∼= H∗(X/A) for ∗ > 0.

Now how are H∗(A), H∗(X), and H∗(X,A) related? We would like to say that
H∗(X,A) = H∗(X)/H∗(A) but as we saw it is not that simple.

Example 10.1.9. Let us do H∗(D
n+1, Sn). Recall that Sn = e0 ∪ en, and

Dn+1 = e0 ∪ en ∪ en+1. Then

C∗(D
n+1, Sn) =

{
Z ∗ = n+ 1

0 ∗ 6= n+ 1
,

where in dimension (n+ 1) the Z is generated by en+1.
So the relative homology is similar:

H∗(D
n+1, Sn) =

{
Z ∗ = n+ 1

0 ∗ 6= n+ 1
.

If we took Dn+1/Sn = Sn+1 the homology differs only in dimension 0.

Now in order to compare these groups we need some terminology from Linear
Algebra.

10.2. Exact Sequences

We have already talked about chain complexes Ck → Ck−1 → · · · , which meant
composites of two maps in a row are 0. Recall the idea of an exact sequence, where

exactness at k means for · · · → Ck+1
f→ Ck

g→ Ck−1 → · · · , Im(f) = Ker(g), then
a sequence is exact if it is exact everywhere.
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There are some equivalent ways of defining a sequence of exact sequences:
A sequence of abelian groups and homomorphisms

. . .→ Cn
fn→ Cn−1

fn−1→ . . .
f1→ C0

is an exact sequence if Ker fn = Im fn+1. Equivalently, this a chain complex for
which the homology Hk = 0: recall that in a chain complex

fk ◦ fk+1 = 0 for all k ⇐⇒ Im fk+1 ⊂ Ker fk,

then further we want Ker fk
Im fk+1

= 0 to get equality.

Example 10.2.1. Suppose we have an exact sequence 0 → A → 0. So all
the maps are 0. Exactness here means that Im(0 → A) = Ker(A → 0). But
Im(0 → A) = 0, and Ker(A → 0) = A. So saying that this is exact is saying that
A = 0.

This is a key thing to see about an exact sequence: an element in the sequence
is 0 if its neighbors are 0.

Example 10.2.2. Suppose we have two nonzero terms, 0→ A→ B → 0. Then
exact means that 0 = Im(0 → A) = Ker(A → B) = 0. So A ↪→ B is injective. By
the same reasoning, Im(A → B) = Ker(B → 0) = B. So A → B is surjective. By
combining these we conclude that A→ B is an isomorphism.

The last elementary one is the one of length 3.

Example 10.2.3. Suppose we have 0 → A → B → C → 0. This is called a
short exact sequence. By the same reasoning as before, A → B is injective, and
B → C is surjective. Exactness at B means Im(A ↪→ B) = Ker(B → C), so
B/A = C.

This is a very useful relationship that occurs often between groups. A simple
example of this are split exact sequence.

Example 10.2.4. A split (short) exact sequence is where we have B = A⊕C,
then we have 0→ A→ A⊕C → C → 0. This is called a split exact sequence since
there is a map going back C → A⊕ C.

In vector spaces, every exact sequence is split, since we can just lift the basis
from C back to B = A ⊕ C. Unfortunately for general groups the story is a bit
more complicated.

Example 10.2.5. Suppose we have the exact sequence 0→ Z2 →?→ Z2 → 0.
Unfortunately, the solution is not unique. This could be ? = Z⊕ Z, when it splits.
But that is not the only possibility. Another possibility is where ? = Z4, then

0→ Z2
×2→ Z4 → Z2 → 0 is exact. This is not split.

So it is not true that the one in the middle is always completely uniquely
determined. However, the size of the group is determined.

Let us look an example of an infinite group.

Example 10.2.6. For 0→ Z→?→ Z2 → 0 there are two possibilities. In the

split case we could have ? = Z ⊕ Z2, or we could have 0 → Z ×2→ Z → Z2 → 0 so
? = Z is possible.
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This happens often in mathematics where we record the information for what
we have control over but we cannot always pin down what the rest must be.

So what about a longer exact sequence? Well it gets more complicated, but we
can say what is going on for many parts.

There is also a way of turning things into short exact sequences. We show it
for a sequence of length 4.

Example 10.2.7. For 0→ A
f→ B

g→ C
h→ D → 0, we know f is injective and h

is surjective, but what about g? Well we can write down 0→ A→ B → Im g → 0
and 0 → Im g → B → D → 0, so we get short exact sequences at the cost of
introducing more groups into the picture.

So exact sequences are a good tool for writing down a lot of information.
Short exact sequences have already come up implicitly in the situation where

we were looking at a pair of spaces (X,A), that is, we have A ↪→ X and we wanted
to look at the relative homology groups and looked at

0→ Ck(A)→ Ck(X)→ Ck(X,A)→ 0,

which is a short exact sequence, and took Ck(X,A) = Ck(X)/Ck(A). But we could
have just said that we have a short exact sequence.

Now we did not just have one exact sequences, we had one at every dimension,

and maps ∂Ak , ∂Xk , and ∂
(X,A)
k from each level to the one below it. Well if we write

this as a tableau as in Figure 10.2.8 the columns are chain complex used to compute
the homology groups H∗(A), H∗(X), H∗(X/A).

0 Ck(A) Ck(X) Ck(X,A) 0

0 Ck−1(A) Ck−1(X) Ck−1(X,A) 0

∂Ak ∂Xk ∂
(X,A)
k

Figure 10.2.8.

The naive hope was that we get a simple relationship, so that we would have a
short exact sequence 0 → Hk(A) → Hk(X) → Hk(X/A) → 0, but as we saw that
this is not true since some of the holes in A can get filled in in X. This is where
we got stuck.

Denote by a short exact sequence of chain complexes

0→ C∗(A)→ C∗(X)→ C∗(X/A)→ 0

such a tableau where each row is a short exact sequence.
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Theorem 10.2.9 (Long exact sequence of a pair (X,A)). There is a long exact
sequence

. . .→ Hk(A)→ Hk(X)→ Hk(X,A)
∂→

Hk−1(A)→ Hk−1(X)→ Hk−1(X,A)
∂→ . . .

The proof is purely algebraic: a short exact sequence of chain complexes yields
a long exact sequence of their homology groups.

Proof. The construction of ∂ : Hk(X,A) → Hk−1(A) is as follows: take

u ∈ Ck(X,A) with ∂
(X,A)
k (u) = 0.

Now Ck(X) → Ck(X,A) is surjective, so we can pick a lift u  u′ ∈ Ck(X).
Now consider ∂Xk (u′).

v ∂Xk (u′)

u′ u

0

Figure 10.2.10.

Because the diagram commutes, ∂Xk (u′)  0. But the short exact sequence
says that ∂Xk (u′) comes from v ∈ Ck−1(A).

But why does v represent a homology class? For that we need v  0 at the
next level.

But ∂Xk (u′)  0 going down the column since we have a chain complex, and
then from exactness we have an injective map taking ∂Ak−1(v) ∂Xk−1 ◦ ∂Xk (u′) = 0
going across.

v

∂Ak−1(v)0 =

∂Xk (u′)

0

u′ u

0

Figure 10.2.11.

So v  0.
The problem is that we have indeterminacy from the lift going from Ck(A) by

exactness of the row. But these do not matter in Hk−1(A). So by the time we pass
to homology, the choice is irrelevant, as it is in the denominator. So we have this
sequence of maps.

To check that this is exact is a long painstaking process. We will just show
one: take Hk(A) → Hk(X) → Hk(X,A): well the composite is clearly 0, even for
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chain complexes. So clearly on the homology, which is a quotient, the composite is
0 as well. So Im(Hk(A)→ Hk(X)) ⊂ Ker(Hk(X)→ Hk(X,A)).

Now suppose we have

[α] ∈ Ker(Hk(X)→ Hk(X,A)).

Well

Ck(X) 3 α α′ ∈ Ck(X,A),

which is 0 in Hk(X/A). Now α′ comes from β′ ∈ Ck(X,A), then we have

Ck+1(X) 3 β′  β ∈ Ck+1(X,A)

via an onto map, then we have ∂Xk+1(β′).

Look at α−∂Xk−1(β′), which goes to α−α = 0, so is an image of some γ ∈ Ck(X).

We claim that ∂Ak (γ) = 0. This follows just as before: (α− ∂Xk−1(β′)) 0.
Lastly, we claim that [γ] ∈ Hk(A) goes to [α] ∈ Hk(X). This is because

γ  (α− ∂Xk (β′)), which differs from α by a boundary element, which represents 0
in homology. So we are done. �

This can be generalized to general short exact sequences of chain complexes
0 → A∗ → B∗ → C∗ → 0. So in fact the long exact sequence can be seen as a
corollary of the more general long exact sequence of a short exact sequence of chain
complexes.

Such long exact sequences with repetition every third term appears all over
mathematics.

Example 10.2.12. Previously we computed with integer coefficients

H∗(S
n) =

{
Z ∗ = 0, n

0 otherwise

H∗(D
n+1) =

{
Z ∗ = 0

0 otherwise

H∗(D
n+1, Sn) =

{
Z ∗ = n+ 1

0 otherwise

Then we have

0→ Hn+1(Dn+1, Sn)→ Hn(Sn)→ Hn(Dn+1)→ . . .→
0→ . . .→ 0→ H0(Sn)→ H0(Dn+1)→ 0→ 0

Well we get 0 → Z = Hn+1(Dn+1, Sn)
∼=→ Hn(Sn) = Z → 0 → 0 from the long

exact sequence.

There are also long exact sequences for homotopy groups and fibrations.

10.3. Relative Homology

Given a pair (X,A) and (Y, V ), a map of pairs (X,A)
f→ (Y,B) is a map

f : X → Y with f(A) ⊂ B. It is easy to see that this induces a homomorphism

Hk(X,A)
f∗→ Hk(Y,B).

A cancellation property of homology called excision is as follows: we have
Hk(X,X) = 0, but then we can generalize to the following:
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Theorem 10.3.1. Suppose U ⊂ Int(A) ⊂ X, then (X \ U,A \ U) ↪→ (X,A).
Then Hk(X \ U,A \ U)→ Hk(X,A) is an isomorphism.

We sketch a proof for the case of cell complexes.

Proof Sketch. Suppose U is the interior of a subcell complex in the interior
of A. Then form Ck(X,A) = Ck(X)/Ck(A) ∼= Ck(X \ U)/Ck(A \ U). So we get
isomorphism in the homology groups as well. �

Example 10.3.2. Suppose we take the suspension ΣX of a space X, made of
two cones C+(X) and C−(X).

C+(X)

C−(X)

X

Figure 10.3.3.

Then Hk(ΣX,C+(X)) = Hk(C−(X), X).

This allows us to cut things down by removing the same thing from the space
and the subspace, provided what we are removing is in the interior.

We can do relative homotopy, but in that case we do not get excision.
The reason this is difficult to prove for homology in general is because in ge-

ometry, excision depends on what is called transversality . Well suppose we have a
simplex in U . Removing it does nothing since it removes it from both A and X.
The messy part is that the simplex might cut through the edge between U and A.
So the key is to break the simplex up into things that do not cross the edge. This
is hard to justify.





CHAPTER 11

A Discussion of the Axiomatic View of Homology

11.1. Axioms of Homology

We now build Homology up from an axiomatic point of view. In fact, we have
already seen most of these. These axioms are known as the Eilenberg-Steenrod
axioms of Homology.

For every pair (X,A), A ⊂ X, there are natural groups which are called
Hn(X,A), n ∈ Z. Some conventional notation: Hn(X, ∅) is called Hn(X).

Naturality (or functoriality) here means that given pairs (X,A)
f→ (Y,B) (that

is f : X → Y with f(A) ⊂ B), there is an induced homomorphism f∗ : Hn(X,A)→
Hn(Y,B) satisying (Id(X,A))∗ = IdHn(X,A) and (g ◦ f)∗ = g∗ ◦ f∗.

Axiom 11.1.1 (Natural Long Exact Sequence). The first axiom is that there is
a natural long exact sequence of (X,A):

. . . Hn+1(X,A)
∂→ Hn(A)→ Hn(X)→ Hn(X,A)

∂→

Hn−1(A)→ Hn−1(X)→ Hn−1(X,A)
∂→ . . .

So if we know some of these groups, we can determine, up to a certain amount
of ambiguity, what the other groups are.

Here the naturality (or functoriality) means furthermore that given a map of

pairs (X,A)
f→ (Y,B), we have the following diagram commutes:

. . . Hn(A) Hn(X) Hn(X,A) Hn−1(A) . . .

. . . Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B) . . .

∂ ∂

∂ ∂

(f |A)∗ f∗ f∗ (f |A)∗

Figure 11.1.2.

Axiom 11.1.3 (Homotopy Axiom). The second axiom is the homotopy axiom.

A minimal form of this is as follows: Say we have X× I, and then X
i
↪→ X×0

and X
j
↪→ X × 1, so i(u) = (u, 0) and j(u) = (u, 1). Then

i∗ = j∗ : Hn(X)→ Hn(X × I).

We actually need this for pairs (X,A), that is for (X,A)× I = (X × I, A× I).
The stronger form is as follows: suppose we have f, g : X × Y , then

f ∼
h
g =⇒ f∗ = g∗ : Hn(X)→ Hn(Y ).

105
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In fact, these two forms are equivalent.

That the stronger form implies the minimal form is obvious; it is not so obvious
to see that the minimal one implies the stronger one. But we just need to see that
f ∼

h
g means that we have a map H : X × I → Y with H(·, 0) = g(·) and

H(·, 1) = f(·). So g = H ◦ i and f = H ◦ j, then g∗ = H∗ ◦ i∗ and f∗ = H∗ ◦ j∗.
But since i∗ = j∗ we get f∗ = g∗.

So a homotopy of pairs is just (X,A)× I H→ (Y,B) is just H : X × I → Y with
H(A× I) ⊂ B.

Corollary 11.1.4. Homotopic spaces (or pairs) have isomorphic homologies.

Proof. Given X,Y with X
f→ Y and Y

g→ X, g ◦ f ∼
h

IdX and f ◦ g ∼
h

IdY

means that g∗ ◦ f∗ = IdHn(X) and f∗ ◦ g∗ = IdHn(Y ). �

Example 11.1.5. Note that H∗(S
n \ k points) ∼

h
H∗(

∨
k−1 S

n−1). Then since∨
k−1 S

n−1 = e0 ∪ en−1 ∪ . . . ∪ en−1, the homology groups are easy to compute.

Axiom 11.1.6 (Excision Axiom). The third axiom is the excision axiom: given

U ⊂ U ⊂ Int(A) ⊂ X with (X \ U,A \ U)
i
↪→ (X,A), then

Hn(X \ U,A \ U)
i∗→∼= Hn(X,A).

Now everything we have said does not prevent us from doing something vacuous.
The final axiom fixes this.

Axiom 11.1.7 (Dimension Axiom). The fourth axiom, the dimension axiom,
says that for coefficients in a ring R (eg. R = Z,Q,R,Zp,Z2)

H∗(point) =

{
R in dimension 0

0 otherwise

When we derive consequences, we prefer not to use the dimension axiom, since
it is of a different character from all of the rest. If we can avoid the dimension
axiom, we can apply the results to more general (extraordinary) Homology theories
that capture the first three axioms but not the fourth.

These axioms changed the field beautifully when they came out in the 1950s.
Now there are various “homologies” that are analogous but not proper homology
theories in the sense of these axioms.

There are two versions of a uniqueness theorem for homology.

Theorem 11.1.8 (Uniqueness Theorem). Any theory satisfying the four axioms
are isomorphic to the usual Homology theory with coefficients with R, H∗(·;R).

We will compute from the axioms what the homology of a suspension H(ΣX)
is. Recall that ΣSk = Sk+1, and if we suspend k times, ΣjSk = Sk+j .

We compute the homology of the suspension. So roughly H∗(ΣX) ∼= H∗−1(X).
Of course this cannot be exactly right, since H0(ΣX) = H0(X) = R. So for X 6= ∅
we have a map X

f→ {point}, then we have H∗(X)
f∗→ H∗(point).

Well we have

H∗(X) ∼= Ker(f∗)⊕H∗(point).
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The way to see this is that if point
i
↪→ X

f→ point then

f∗ ◦ i∗ = (f ◦ i)∗ = (Idpoint)∗ = IdHn(point) .

Ker(f∗) is called the reduced homology H∗(X). So

H∗(S
n) =

{
Z ∗ = n

0 otherwise
H∗(S

0) =

{
Z ∗ = 0

0 otherwise
.

In relative homology H∗(X,A) = H∗(X,A) since we remove the same thing
from both.

Theorem 11.1.9. H∗(ΣX) = H∗−1(X).

Then to get back the regular Homology we can just add back in the homology
of a point everywhere.

Proof. We do this in three steps.
The first step is H∗(ΣX) = H∗(ΣX,C+X), where C+X is the upper cone of

ΣX.
Consider the exact sequence of the pair (ΣX,C+X):

H∗(C+X)→ H∗(ΣX)→ H∗(ΣX,C+X)
∂→ H∗(C+X)→ . . .

But C+X ∼
h
{point}, H∗({point}) = 0, so in fact we have

0→ H∗(ΣX)
∼=→ H∗(ΣX,C+X)

∂→ 0→ . . .

The next step uses excision: (C+X,X) ↪→ (ΣX,C+X) implies via excision that

H∗(C−X,X)
∼=→ H∗(ΣX,C+X).

For the final step, consider the pair (C−X,X):

. . .→ H∗(C−X)→ H∗(C−X,X)
∂→ H∗−1(X)→ H∗−1(C−X)→ . . .

But again, C−X ∼
h
{point}, so H∗(C−X,X) ∼= H∗−1(X).

Then putting this all together we get H∗(ΣX) ∼= H∗−1(X). �

Notice that we did not need to use the dimension axiom here since we removed
the homology of a point.

Example 11.1.10. What is H∗(S
n)? Well H∗(S

n) = H∗(point) ⊕ H∗(S
n)

where

H∗(S
n) ∼= H∗−1(Sn−1) ∼= . . . ∼= H∗−n(S0) ∼= H∗−n(point)

So H∗(S
n) = H∗(point)⊕H∗−n(point).

So we begin to see why there can be a uniquness theorem, since we can just
build up cell-complexes using these spheres.

11.2. H0 and H1

Let us look a bit more at H0 and H1.

Proposition 11.2.1. H0(X;R) = R#path connected components of X .
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Proof. Let us look at the singular chain complex: C1(X;R)
∂→ C0(X;R). So

what is C0(X;R)? Well 0-simplices are just points so C0(X;R) =
⊕

points in X R.

1-simplices are just paths, so C1(X;R) =
⊕

paths in X R. Now what does the bound-
ary map ∂ do? Well if we have a path ω taking p  q, then ∂ω = q − p. So
H0(X;R) = (

⊕
points in X R)/{(q − p) | ∃ path p  q}. So we send q − p = 0 so

q = p, that is, points are equal to each other if there are paths between them, so
we end up with just one copy of R for each path-connected component of X. �

Proposition 11.2.2. If X is path connected then H1(X,Z) ≡ π1(X,x)/[·, ·]
(where [·, ·] is the commutator), that is, π1 made abelian.

The relation between higher homology and homotopy groups are much more
complicated.

Proof. The plan is to create a homomorphism π1(X,x)/[·, ·] h→ H1(X;Z) and
see that the kernel is exactly [·, ·]. This map is called the Hurewicz map.

So take [α] ∈ π1(X,x). Now α : ∆1 = I → X with α(0) = α(1), so α ∈ C1(X),
with boundary 0. So it represents an element [α] ∈ H1(X;Z).

We need to check that this map is well-defined, and that it is a homomorphism.
Then we need to check its kernel and that it is surjective.

So for well-definedness, suppose we picked another loop α′ ∼
h
α.

• α α′

α

α′

x x

∆2
1

∆2
2

X

H

Figure 11.2.3.

Well the homology is a map I × I H→ X, where (·, 0) = α, (·, 1) = α′, and then
(0, ·) = (1, ·) = x. We can cut this up into two 2-simplices ∆2

1 and ∆2
2 by cutting

from (0, 0) to (1, 1), and we have a trivial 1-simplex ∆1 at x. Then

∂(∆2
1 + ∆2

2) = (α) + ∆1 + diagonal + (−α′)−∆1 − diagonal = α− α′

So [α] = [α′] in H1(X,Z).
Next, why does [α ·β] = [α] + [β] in H1(X,Z)? Well we can get a triangle from

α, β, α · β:

α

β
α · β

Figure 11.2.4.
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Then ∂∆2 = α+ β − (α · β), but the boundary of this triangle is degenerate so
[α] + [β] = [α · β] in H1(X;Z).

Now we can say that since H1(X;Z) is abelian, the map π1(X) → H1(X;Z)
factors through π1(X)/[·, ·] for free:

π1(X) H1(X)

π1(X)/[·, ·]

Figure 11.2.5.

So to get an isomorphism we want a homomorphism H1(X;Z)→ π1(X)/[·, ·].
Remember that H1(X;Z) is a subquotient of C1(X). So we will define a ho-

momorphism C1(X)→ π1(X)/[·, ·], and from this we will get a homomorphism on
the homology on its subquotient H1(X;Z).

The problem is that a typical chain α is far from being a loop. But we can
just connect everything to the basepoint: for each p ∈ X, pick a path γp taking
p  x (take γx be the trivial path). Now if α(0) = p and α(1) = q then we can

take α
Φ
 γ−1

p αγq ∈ π1(X,x)/[·, ·].
We need to check that this is a homomorphism, and that Φ(∂C2(X)) = 0 in

π1(X)/[·, ·]. Together these give a homomorphism

H(X;Z) ⊂ C1(X)/∂C2(X)→ π1(X)/[·, ·].

But the homomorphism of Φ is obvious since C1(X) was a free abelian group
defined on a basis of

⊕
Z.

Now take a 2-simplex with endpoints p, q, r. In order to turn this into a loop,
we take the loop x r  p x p q  x q  r  x.

•r • p

• q

•x • x

•
x

Figure 11.2.6.

Obviously this can be filled in, so the boundary maps to 0.
So we have maps π1(X)/[·, ·] → H1(X;Z) and back. It is easy to check that

the composites are identities. �

Exercise 11.2.7. Check the details on these composites.
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In general there is a homomorphism πn(X)→ Hn(X), called Hurewicz homo-
morphism, but unfortunately it is not in general injective or surjective.

In words, it is just mapping spherical holes to all holes. But not every hole is
spherical, and in homotopy we can only fill in holes by disks but homology has no
such standard. There is one important case when it is isomorphic, and a slightly
less important case where it is surjective.

Roughly if there is a space with no holes below dimension n for n > 1, then in
the first dimension with non-trivial holes, the homotopy and homology groups are
the same, since in the first such dimension there is no way to make non-spherical
holes. For n = 1 we cannot say this since π1 is not necessarily abelian.

Exercise 11.2.8. Compare π1(Klein bottle) to H1(Klein bottle).

11.3. The Homotopy Axiom

We have discussed the other axioms in detail as part of the various forms of
Homology; let us now talk about this one.

So why is Homology a Homotopy invariant?
Well we just need to consider a key special case where we have a cylinder X×I

with X
i
↪→ X × 0, i(u) = (u, 0) and X

j
↪→ X × I, j(u) = (u, 1).

X

j

i X × 0

X × 1

Figure 11.3.1.

What we need is for i∗ = j∗ : Hk(X)→ Hk(X × I).
Say for the cellular chain complex, for every cell u in X, s(u) will be the cell

u × I in X × I. Correspondingly, we produce s : Ck(X) → Ck+1(X × I). Now
what is the boundary of this s(u)? Well this is difficult because when we thicken
it up, we get a top, a bottom, and sides. So ∂s(u) = j(u)− i(u)± s(∂u). That is,
(∂s± s∂)(u) = j(u)− i(u).

Claim 11.3.2. The left hand side (∂s± s∂)(u) will vanish in the Homology.

Proof. In a Homology ∂u = 0 since it is on the boundary, so (s∂)(u) = 0.
The other term is (∂s)(u) = 0 anyway, since it is on the boundary as well. �

So at the level of Homology, in fact i∗ = j∗.
To make this more precise, say in Singular Homology, we introduce the notion

of a (algebraic) chain homotopy between maps of chain complexes.

We talked about maps of chain complexes, where for chains Ak
∂Ak→ Ak−1 → · · ·

and Bk
∂Bk→ Bk−1 → · · · then (fk) is a map of chain complexes so that

∂Bk ◦ fk = fk−1 ◦ ∂Ak .
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We now need to do something more. In Topology we talk about Homotopies,
so let us talk about the algebraist’s version of Homotopy.

Well if we have a map of chains, what is the homotopy?

Definition 11.3.3. Suppose we are given chain complexes A∗, B∗ and maps

between them A∗
(f∗)→ B∗ and A∗

(g∗)→ B∗. A chain homotopy of f∗ and g∗ is a family

of maps Ak
(sk)→ Bk+1 satisfying fk − gk = ∂Bk+1sk ± sk−1∂

A
k .

Ak+1

Ak

Ak−1

Bk+1

Bk

Bk−1

fk+1

gk+1

fk

gk

fk−1

gk−1

sk

sk−1

Figure 11.3.4.

Proposition 11.3.5. If there is such a chain homotopy (f∗) to (g∗), then the

induced maps on Homology are the same: H∗(A∗)
f∗=g∗→ H∗(B∗).

Proof. On Ker(∂Ak ), we have sk−1(∂Ak ) = 0, and ∂Bk+1sk = 0 in Homology. So
f∗[u] = g∗[u] for u ∈ A. �

So we’ll see that a Homotopy in Topology gives a Chain Homotopy of chain
complexes, which means the same maps in Homology. The second part we have
seen, and the first part we sketched for the Cellular chain complex. We will also do
it now for Singular chain complexes.

So let us go back to the cylinder X × I with X
i
↪→ X × 0, i(u) = (u, 0) and

X
j
↪→ X × I, j(u) = (u, 1). So say we have a singular simplex ∆k α→ X. We would

like to construct s(X), which is a sum of singular simplices in X × I. Recall that
this corresponds geometrically to α× I. The problem is that ∆k× I is a prism, not
a simplex.

So what we will need to do is decompose ∆k × I into a sum of simplices and
work with those.

Now for example, ∆1×I is just a square, so it easy to break it up into simplices.
For general ∆k × I, well ∆k has vertices v0, v1, . . . , vk, then ∆k × I has vertices
v0 × 0, v1 × 0, . . . , vk × 0, v0 × 1, v1 × 1, . . . , vk × 1.
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The idea is to go around the bottom for a while and then jump to the top, or
jump up and then stay up at the top. In ∆1 × I we can do v0 × 0, v1 × 0, v1 × 1,
and v0 × 0, v0 × 1, v1 × 1.

So we take v0 × 0, v1 × 0, . . . , vj × 0, vj × 1, vj+1 × 1 . . . , vk × 0. So these are
k + 2 simplices, and so ∆k × I is a union of k + 1 ∆k+2’s.

For ∆ a simplex, let s(∆k) =
∑k+1
j=0 ∆k+1

j . Then we can check that

j(∆k)− i(∆k) = ∂ ◦ sk ± sk−1 ◦ ∂
so we get a chain homotopy s.

Well let us go back to ∆1 × I. We have

s(〈v0, v1〉) = 〈v0 × 0, v1 × 0, v1 × 1〉+ 〈v0 × 0, v0 × 1, v1 × 1〉
so

∂s+ s∂(〈v0, v1〉) = ∂(〈v0 × 0, v1 × 0, v1 × 1〉+ 〈v0 × 0, v0 × 1, v1 × 1〉)
+s(v1 − v0)

= 〈v0 × 0, v1 × 0〉+ 〈v1 × 0, v1 × 1〉+ 〈v0 × 0, v1 × 1〉
−(〈v0 × 0, v0 × 1〉+ 〈v0 × 1, v1 × 1〉+ 〈v0 × 0, v1 × 1〉)
+v1 − v0

which vanishes.
This generalizes just as it did before.



CHAPTER 12

Miscellaneous Topics

12.1. Application: Lefschetz Fixed Point Theorem

The Lefschetz Fixed Point Theorem is a generalization of the Brouwer Fixed
Point Theorem.

So let X be a finite cell complex, so in particular X is compact. Consider a
function f : X → X. We want to know if what the fixed points are.

Example 12.1.1. For IdS1 : S1 → S1 every point is fixed, but if we rotate it,
no points are fixed, but these maps are homotopic.

So not all homotopy classes have a fixed point. But we will see that for most (in
some sense) homotopy classes, all maps in the class have a fixed point. Obviously
this is not the same point, but there is a fixed point.

Note that this does not work for non-compact spaces; in fact for those spaces
it is kind of hopeless. To do so we need much more structure.

Theorem 12.1.2 ((Hopf-)Lefschetz Fixed Point). For f : X → X, consider
the induced map fk : Hk(X)→ Hk(X). Fixing a basis for Hk(X), this is a matrix,
so we can consider the trace Tr(fk). Then if the Lefschetz number

L(f) =
∑
k

(−1)k Tr(fk)

is non-zero, then f has a fixed point.

Note that the sum only depends on the homotopy class.

Example 12.1.3. Take X = Dn. As we saw H∗(D
n) = 0 for ∗ 6= 0 and

H0(Dn) = Z. So f0 : Z#components → Z#components, that is f0 = (1)1×1. So
L(f) = (−1)0 × 1 = 1 6= 0. So f has a fixed point. More general we can take X to
be anything contractible.

Example 12.1.4. Take X = RP2. H∗(RP2;Q) = 0 if ∗ > 0 and H0(RP2;Q), so
this behaves like a point using rational coefficients. So any function f : RP2 → RP2

has a fixed point.

Example 12.1.5. Take X = Sn (Hadamard’s Theorem). For f : Sn → Sn,
f0 = Z and fn : Hn(Sn)→ Hn(Sn) is fn = deg(f). So Lf = 1 + (−1)n deg(f). So
if deg(f) 6= (−1)n+1, then f has a fixed point.

Note that we really do this exception, since the antipodal map Sn
α→ Sn has

no fixed points. It is not hard to see that the degree is deg(α) = (−1)n+1.
Hadamard proved this analytically, not topologically.
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Example 12.1.6. Suppose f ∼
h

Id. Then using real coefficients, the Lefschetz

number is

L(f) =
∑
k

(−1)k Tr(IdHk(X)) =
∑
k

(−1)kβk(X)

where βk(X) is the k-th Betti number , which is the dimension of Hk(X;R).

For every space, χ(X) =
∑
k(−1)kβk(X) is the Euler characteristic of X (Alge-

braic Geometers use e instead of χ). Another way to write the Euler characteristic
is
∑
k(−1)k(#k − cells of X). Recall that for a graph on the S2 = R2 ∪ {∞}, we

have v − e+ f = 2.
The proof that the two sums are equal will lead to the proof of the Lefschetz

Fixed Point Thoerem.
So χ(X) is an important invariant of spaces based on the following theorem:

Theorem 12.1.7. Let X be a finite cell-complex. Then we have∑
(−1)ici(X) =

∑
(−1)iβi(X)

where ci(X) is the number of i-cells in the cell decomosition, and the Betti numbers
βi(X) = Rank(X;R), where R is a ring R = Z,Q,R,C, . . ..

In fact R = Z2 gives different Betti numbers, but the overall sum ends up being
the same.

The theorem is proved by applying the following proposition to the cellular
chain complex:

Proposition 12.1.8. Given a chain complex of finitely generated groups (vector
spaces over a field) Ci → Ci−1 → . . .→ C0, call it C, then∑

(−1)i RankCi =
∑

(−1)i RankHi(C).

For example, in a short exact sequence (so Hi = 0) 0 → A → B → C → 0,
then

RankB = RankA+ RankC =⇒ RankA− RankB + RankC = 0.

Proof. What we will do is break the long chain complex into short sequences,
then add them back up and see what we get.

Look at Ci → Ci−1 → Ci−2; we have the cycles Zi = Ker(Ci → Ci−1) and
boundaries Bi−1 = Im(Ci → Ci−1). Then Bi ⊆ Zi ⊆ Ci and Hi = Zi/Bi.

So we have the short exact sequence

0→ Bi−1 → Zi−1 → Hi−1 → 0,

so

RankZi−1 = RankHi−1 + RankBi−1.

Furthermore, we have

0→ Zi−1 → Ci−1 → Bi−2 → 0,

so

RankCi−1 = RankZi−1 + RankBi−2.

Take the alternating sum∑
(−1)i RankCi =

∑
(−1)i RankZi +

∑
(−1)i RankBi−1.
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But then plugging in for RankZi we get∑
(−1)i RankCi =

∑
(−1)i RankHi +

∑
(−1)i RankBi +

∑
(−1)iBi−1

but the last two sums cancel, so when we are all finished we are left with∑
(−1)i RankCi =

∑
(−1)i RankHi �

An amusing application is as follows: For n odd, Sn has a free action of Zk for
each k. One way to do this is S2m−1 as a unit sphere in Cm, then one example of
a free action is scalar multiplication by η = e2πi/k, which is a k-th root of unity.
S2m−1/η is a lens space L2m−1(k) (there is a generalization where we use different
roots of unity at different coordinates) and these have π1 = Zk. When k = 2, then
the quotient just gives RP2.

Proposition 12.1.9. For k > 2, there is no free action of Zk on S2m.

Proof. To make the proof easier, we will assume that the quotient has a cell-
complex structure. Now let Y → X be a finite cover of degree d. Then χ(Y ) =
dχ(X), since we can use a cell decomposition of X to get a cell decomposition of
Y with d cells in Y over each cell in X.

But this gives implications for divisibility. In particular, for a Zk free action on
S2m, we get a degree k covering map S2m → S2m/Zk, then χ(S2m) = kχ(S2m/Zk),
so k|χ(S2m) = 1 + (−1)2m = 2, so k cannot be bigger than 2. �

So back to the Lefschetz number, we can think of this as a generalization of
this.

Proof Sketch of Theorem 12.1.2. Assume (for simplicity) that X has a
cell decomposition. We can assume after subdividing the cells that f is approxi-
mated by (and in particular homotopic to) what is called a cellular map f ′ which
maps each cell to a cell of at most the same dimension. So the induced map f ′∗ can
be a map f ′∗ : Ci(X)→ Ci(X).

Then by the same argument as for the Euler characteristic we will show that∑
(−1)i Tr(Ci

(f ′)∗→ Ci) =
∑

(−1)i Tr(Hi(X)
(f ′)∗→ Hi(X)) = L(f).

As an example on a short exact sequence 0→ A→ B → C → 0, then a map from

this to itself is comprised of α : A→ A, β : B → B, γ : C → C. But β =

(
α 0
∗ γ

)
,

so Trβ = Trα+ Tr γ.
Then L(f) 6= 0 means that for some dimension f ′(cell) is inside that cell. So

there is a point whose image, as it lies in the same cell, is not far away from the
point.

Now keep subdividing the cells, and take the limit of such points. As we
subdivide, we also can make f ′ approximate f better and better. �

We could have also used simplices instead of cell complexes.
So most maps have fixed points.
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12.2. The Mayer-Vietoris Theorem

This is the analogue of van Kampen’s theorem but for Hi(X). This is for
X = A ∪B.

For simplicity, let X,A,B be cell complexes, with A ∩ B likewise. Well then
#k-cells of X = #k-cells of A+ #k-cells of B −#k-cells of A ∩B.

So we have the following inclusions:

A ∩B

A

B

X

k

`

i

j

Figure 12.2.1.

Then we have the short exact sequence

0→ C∗(A ∩B)
k∗−`∗→ C∗(A)⊕ C∗(B)

i∗+j∗→ C∗(X)→ 0.

The Mayer-Vietoris sequence now runs as follows:

. . . → Hi(A ∩ B) → Hi(A) ⊕ Hi(B) → Hi(X)
∂→ Hi−1(A ∩ B) → . . .

This can be derived from the Homology axioms without the dimension axiom.
The trickiest part is to derive the boundary map ∂MV , which is obtained as fol-
lows: suppose we have Hi(X) → Hi(X,A), then by excision we have Hi(X,A) ≡

Hi(B,A∩B). But we have a boundary map Hi(B,A∩B)
∂

Hi−1(A∩B). It is a lot
of work to show how this fits into a long exact sequence.

Example 12.2.2. Take Sn = Dn
+ ∪Sn−1 Dn

−. Then we can get

. . .→ Hk(Dn
−)⊕Hk(Dn

+)→ Hk(Sn)
∂→

Hk−1(Sn−1)→ Hk−1(Dn)⊕Hk−1(Dn)→ . . .

Then since the homologies of disks are 0 in most dimensions, we obtain that

Hk(Sn)
∂→∼= Hk−1(Sn−1) except in dimension 0.

Note that we can see χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B), either by counting
cells, or by the Mayer-Vietoris sequence.

12.3. Homology of a Product Space

The homology of a product space is tricky. The homotopy was very simple:
πk(X × Y ) = πk(X)× πk(Y ). One of the significant differences between homotopy
and homology is that in homology there is no formula like that, and there is a
reason why.

Proposition 12.3.1. χ(X × Y ) = χ(X)χ(Y ).

Proof. If we count cells, i-cell in X, j-cell in Y , then the product is (i+j)-cell
in X × Y . Then χ just counts the cells (with signs of parity of dimension). �
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But χ can also be computed from the Homology H∗(·). This suggests that
Hk(S1 × S1) =

⊕
i+j=kHi(S

1)⊗Hj(S
1).

The Kunneth Theorem says that this is valid for coefficients in a field, and for
coefficients in Z if at least one of X,Y has no torsion in its Homology. But there is
a further torsion term when both X,Y have torsion with Z coefficients.

Now there are some nice maps from a product space X × Y . There are the

projection maps X ×Y p1→ X and X ×Y p2→ Y . These accounted for the Homotopy
groups but not for the Homology group because of the cross-talk. So what is left
over when we take out X and take out Y ?

The Smash product will get rid of X and Y in X × Y .

Definition 12.3.2. The smash product is X ∧ Y = (X × Y )/(X ∨ Y ).

Example 12.3.3. Sk ∧ S` = Sk+`, which we can see by taking cells: we have
(e0 ∪ ek)∧ (e0 ∪ e`)/(e0 × (e0 ∪ e`)∪ (e0 ∪ ek)× e`), which leaves e0 ∪ ek+` = Sk+`.

So we also have the map X × Y q→ X ∧ Y . These maps together detect all of
the Homology H∗(X × Y ).

Now we are tempted to say if they give the whole thing, why don’t we put them
together and decompose X × Y into them? Well the problem is that these maps
have nothing to do with each other. So there is no way to directly compare X × Y
with, for example X ∨Y ∨ (X ∧Y ). Now they have isomorphic Homology but there
are no maps between them. In fact they are not the same Homotopically.

Now let us look at the case of a Torus.

Example 12.3.4. If we take S1 × S1 this has the same Homology as the space
S1∨S1∨S1∧S1 = S1∨S1∨S2. But we have no maps comparing them. However,
when we have suspension, we can add maps together. So we can take these maps
p1, p2, q and add them up, and then we can have a comparison going.

So when we take the suspension, we get Σ(X × Y )
Σp1→ ΣX, Σ(X × Y )

Σp2→ ΣY ,

and Σ(X × Y )
Σ1→ ΣX ∧ Y . Now we can take these three maps and combine them

into Σ(X × Y )
f→ ΣX ∨ ΣY ∨ Σ(X ∧ Y ) where f = (Σp1) + (Σp2) + (Σq).

It is not hard to check that this induces an isomorphism on the Homology
H∗(·).

Theorem 12.3.5 (Whitehead). If we have a map V
f→W of simply connected

spaces, then the following are equivalent:

(1) f is a homotopy equivalence.
(2) f∗ is an isomorphism on H∗(·;Z).
(3) f∗ is an isomorphism on π∗(·).

It would be tempting to say that if two spaces have the same Homology, then
they are Homotopy equivalent. However, it depends on the existence of a geometric
map. So if we do have a geometric map and it induces an isomorphism on Homology,
then this is the criteria for Homotopy equivalence.

Example 12.3.6. If we take Sp×Sq, Σ(Sp×Sq) h.e.→ ΣSp ∨ΣSq ∨Σ(Sp ∧Sq),
but this says that Σ(Sp × Sq) ∼

h
Sp+1 ∨ Sq+1 ∨ Sp+q+1.

So for the specific case of S1 × S1, the suspension of a torus is homotopy
equivalent to S2 ∨ S2 ∨ S3.
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Note that while the Whitehead theorem fails for non-simply connected spaces.
Homotopy will catch simply connectedness, but Homology is not good enough of an
invariant. For example, π1 could abelianize to 0 and we lose all of the information.

But there is a trick: for non-simply connected spaces, we pass to the universal
cover:

Theorem 12.3.7. If we have f : V → W a map of connected spaces, then the
following are equivalent:

(1) f is a homotopy equivalence.

(2) f∗ is an isomorphism on π1(·), and then X̃
f̂→ Ỹ induces an isomorphism

H∗(X̃)
f̂∗→ H∗(Ỹ ).

(3) f∗ is an isomorphism on π∗(·).

So this gives a very practical way to compute if Homotopy groups are equivalent.
This is used in Manifold theory all the time.

12.4. Cohomology

We will motivate the study of Cohomology, which is worth a full course in its
own right.

Recall that if V is a vector space over a field, then the dual vector space is
V ∗ = HomF(V,F), which has the same rank, but there is no natural isomorphism
of V and V ∗ unless a basis is chosen.

Note that if V
f→ W represented by matrix A, then V ∗

f∗← W ∗ is represented
by At.

Now suppose we are using coefficients in a field F. We can apply dualization
everywhere:

Before we talked about a chain complex

Ci
∂i→ Ci−1

∂i−1→ . . .
∂1→ C0,

now we get the co-chain complex

C∗i
δi← C∗i−1

δi−1

← . . .
δ1← C∗0 ,

where we normally let δi = ∂∗i . Then we get

(Hi(X))∗ = Hi(X) =
Ker δi+1

Im δi
.

Then we get all the same axioms for H∗(X) except with arrows reversed. For

example, for X
f→ Y the induced map is Hk(X)

fk← Hk(Y ).
So how is this different from Homology, and why bother?
In many settings, eg. Analysis, functions on areas are more the focus than the

areas. For example, if we took a loop, Ck(X) =
⊕

k-cells in X Z, then

Ck = Hom(Ck(X),Z) = Hom
(⊕

Z,Z
)

=
⊕

Z.

Another reason is that there is a bilinear map Hk(X) × H`(X)
∪→ Hk+`(X),

called the cup product .
However, it is anti-commutative, in the sense that α∪β = (−1)dimα dim ββ ∪α.

The idea is that [α] ∈ Hk(X) means α is a linear function on Ck(X), so it is
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specified by its value on a basis of k-simplices of X. So for a k-simplex ∆k f→ X,
we have α([f ]) ∈ R. Given α ∈ Ck(X), β ∈ C`(X), and f : ∆k+` → X, we define
α ∪ β(∆k+` = 〈v0, v1, . . . , vk+`〉) = α(〈v0, . . . , vk〉)β(〈vk+1, . . . , vk+`). We need to
check that it is well-defined on H∗(X). Well δ(α ∪ β) = (δα) ∪ β ± α ∪ (δβ). We
have 1 ∈ H0(X) where 1(pt) = 1. Then [1] ∪ [α] = [α].

So in this way Cohomology gets an algebra structure.
An interesting example to work out is the following: Let X = S1 ∨ S1 ∨ S2,

and Y = S1 × S1, then they have the same H∗(X), H∗(Y ), so additively the same
H∗(X), H∗(Y ), but different multiplicatively. So additively, we have generators
1 ∈ H0(X), α, β ∈ H1(X), γ ∈ H2(X), and we have a similar story additively in
Y . However, multiplicatively α ∪ β = 0 in H2(X), but in Y , α ∪ β = γ.

So we can see that these spaces are not homotopic by noting that their Coho-
mology groups are different multiplicatively.

The big fact is that if we have X
f→ Y , then H∗(X)

f∗← H∗(Y ) is not just linear,
but a ring homomorphism compatible with the multiplication:

f∗(α ∪ β) = f∗(α) ∪ f∗(β).

Now note that by our definition of a co-chain, we have an evaluation of co-chain
on chain 〈·, ·〉 ∈ R. Then we have 〈δα,A〉 = 〈α, ∂A〉. In other words,

∫
A
δα =

∫
∂A
α,

which is Stokes Theorem. So there is a formulation of Cohomology in the langauge
of differentials, which is called De Rham Cohomology, and then we can get the
same isomorphism of Cohomology groups, where dx ∧ dy ↔ α ∪ β.

The following is an interesting example of a non-zero product:

Example 12.4.1. In RPn we have H∗(RPn;Z2) = Z for 0 6 ∗ 6 n. However
H∗(RPn,Z2) = Z2[x]/(xn+1 = 0), where xk is the additive generator in dimen-
sion k. On a manifold this multiplication in H∗(·) is dual to what is called the
intersection product on H∗(·).

Multiplication in cohomology determines intersections in homology, but this
only works on manifolds.

12.5. Eilenberg Obstruction Theory

This theory answers the following problem:
The extension problem in Topology is the following: we have for A ↪→

i
X a map

A
f→ Y . The question is if there is a map X

g→ Y , called an extension, so that the
following diagram commutes:

A X

Y

i

f g

Figure 12.5.1.

The answer is clearly not always, since if we took Sk ↪→ Dk+1. Then there
exists an extension g only if [f ] ∈ πk(Y ) is 0.
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So is there a complete answer to when we can extend a map? Well Eilenberg
Obstruction Theory measures the obstruction to extending a map in stages.

Remark 12.5.2. A basic principle is the Homotopy Extension Principle, which
says that this depends only on the Homotopy class of f .

In other words, the problem depends on f , but in fact it is the same for maps
homotopic to f . Now this is not immediately obvious.

To prove this on cell-complexes, say f1 ∼
h
f2 as maps A→ Y , we want to show

if f1 extends to X then so does f2. The proof will be by induction on the cells of
X not in A. Now think of X = A ∪ cells ∪ . . .. So for adding one cell ek, we just
need the following key lemma, since all we care about is what is happening on the
edge of the cell.

So we have a homotopy from ek × 0 to ek × 1, and we have an extension of
the boundary map f1 to the whole disk ek × 0. We want to know if we can extend
f2 the same way. But we have a retract r that takes the “cylinder” ek × I to the
“sides” and the “bottom”. So we can just compose.

This tells us that the extension problem depends only on the homotopy class
of f .

So the Eilenberg obstructions compute whether this can be done inductively
on A ∪ (k-skeletons of X). We will hit problems: the trouble is that when we try
to extend the map, for each cell, we will encounter an obstruction given by the
homotopy class of the map on its boundary.

So this tells us that for each relative k-cell (X,A), we get an element πk−1(Y ).
So on k-cells we get a homotopy class. So this altogether actually defines an element
of the co-chain Ck(X,A;πk−1(Y )). This has co-boundary δ = 0. So we end up in
Hk(X,A;πk−1(A)).

The problem is that as we extend the map, we make choices, and what we get
in the obstructions could depend on the choices we make. So while extending we
might get an obstruction that reflects a bad choice 50 dimensions ago, for example.

So in practice Eilenberg Obstruction Theory is useless except in very special
cases.
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